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I - Non degenerate systems



Consider the d-dimensional diffusion

dXs =b(s, Xs)ds + o(s, Xs)dWs, s>0, Xo=x. (1)



Consider the d-dimensional diffusion
dXs =b(s, Xs)ds + o(s, Xs)dWs, s>0, Xo=x. (1)

Bounded case: For oo* > 0, for bounded and Hdélder continuous
coefficients, it is well known that there exists a unique weak solution
which admits a density p(0,x,s,y),

C7'Ty-1(s,z —y) < p(0,2;5,y) < CTa(s,2 —y) (2)
Vip(0,2,5,y)] < Cs™2T\(s,x —y), j=1,2, (3)

for any z,y € R? and s € [0, 7], where

Tia(s,y) := s7% exp (—y*/(As)), A>1,s>0.



What can we expect for unbounded and possibly irregular drifts?
Example: Ornstein-Uhlenbeck (OU) process

dXs = Xods +dWs, Xy ==z,
has explicit density

pOU(Oaxvsay) :( ( )/S) d/QF 25,1)/S(S7€S$—y).



Primer: density estimates with smooth Lipschitz continuous drifts
by Delarue and Menozzi (2010)

CTITx-1(s,7s(2) —y) <p(0,7;5,y) < CTa(s,7s(2) —w),  (4)
where C, A depend both on the constants in the Assumptions and T,
with
Vs(x) :b(S,’ys(l’)), VO(I) = Z.

If the drift b is bounded we recover the usual deviation |z — y| (as
Friedman): indeed

1 1 1 1 1
572w —y| = [[blloos? < 572 |vs(x) —yl < 577w =yl 4 [|bflocs?.



Assumptions:

» (Non degeneracy). There exists a constant ko > 1, such that
—1,,12 * 2 d
Ko |y‘ < <UU (t,l‘)y,y> SHO|y| ) JJ,Z/ER ’ t207
and for some « € (0,1], o € C§ ., namely

lo(t,x) — o(t,y)| < kolz —y|*, t>0, z,y € R
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» (Non degeneracy). There exists a constant ko > 1, such that
—1y,,12 * 2 d
Ko |y‘ < <UU (t,l‘)y,y> SHO|y| ) JJ,Z/ER ’ t207
and for some « € (0,1], o € C§ ., namely

lo(t,x) — o(t,y)| < kolz —y|*, t>0, z,y € R

» There exist positive constant x1 > 0 and 3 € [0, 1] such that for
all z,y € R¢ and t > 0,

(8, 0)| < w1, [b(t,2) = b(t,y)| < Ka(jz =yl V |z = yl).

Particular cases:

» For 8 =0, b can possibly be an unbounded measurable function
with linear growth.

» The drift b(t,z) = c1(t) + c2(t)|z|?, B € [0,1], c1, ca bounded
measurable functions of time, enter this class.



Theorem (Menozzi, P., Zhang 2020)

Forany T > 0,0 <t < s <T and = € R?, the unique weak solution
X s(x) of (1) starting from x at time ¢ admits a density p(¢, z; s, y)
which is continuous in z,y € R%. Moreover, p(t,x; s, y) enjoys the
following estimates:

» (Two-sided density bounds)

Co 'Tyo1(t = 8,705(2) — ) < p(t,258,y) < Colag(s =, 75(2) — )i
> (Gradient estimate in x)

IVap(t,z58,9)] < Ci(s — ) 7205, (5 — t,7,6(2) — y);



» (Second order derivative estimate in x) If g € (0,1]
’vip(th, 87y)’ < 02(8 - t)_lr)\z (S - ta’yt,s(‘r) - l‘),

» (Gradient estimate in y) If 5 € (0,1] and for some « € (0, 1) and
Ko > 0,

Vol < Ko, |Vo(t,z) = Vo(t,y)| < kalz —y|%,
then

IV yplt, @ 5,y)| < Ca(s — )75 0x, (s — b, y0(x) — y).-



» Note that “44(z) = b(t,v:(x))” is not generally well posed.
Therefore we introduced the mollified (in space) drift
be(t,x) = b(t,-) * 0-(x),

where p.(z) := e p(e1z), and p is a test function supported in
the unit ball with unit integral.

d
Importantly we can prove the following equivalence between
mollified flows: Ve € (0,1], there exists C = C(T, k1,d) > 1 s.t

Y (@) =yl s —t] =c [ (@) —yl+|s—t] <o [2— D ()| +|s—1|

(5)
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» Similarly, if 8 > 0, 'yt(es)(a:) can be replaced as well by any Peano
flow v;,5(z).



» First work in a regularized setting: in this case there exists the
transition density p(¢, x; s,y) which is C°°- smooth in variables
x,y for all t < s, by Hérmander’s theorem, and is the
fundamental solution of

O+ Ligu=0, p(t,;s,y) —0y(-) tTs, (6)

where
Liof(x)= %tr(oo*(t,x)Vif(m)) + (b(t,z), Vo f(x)).

» Derive bounds that are actually independent on the
regularization procedure



Drift adapted parametrix method

Let T™¢(t,x; s,y) the Gaussian fundamental solution for the operator
. 1
O+ L75 =0t 5 Y 0i0;(t 7,0 (€)0i0) + D bilt 1.7 (6

» parametrix as: Z(t,x;8,y) := I'®Y(¢,z;s,y). In particular

Z(tvx;svy) S COF)\(S - tv’yt,s(x) - y) = p)\(t,(E; s,y).



Drift adapted parametrix method

Let T™¢(t,x; s,y) the Gaussian fundamental solution for the operator
. 1
O+ L75 =0t 5 Y 0i0;(t 7,0 (€)0i0) + D bilt 1.7 (6

» parametrix as: Z(¢,z;s,y) = [®Y(¢,x; s,y). In particular
Z(ta x5 s, y) S COF)\(S - tv ’yt,s(x) - y) = p)\(ta x5 s, y)

By iterating the Duhamel formula N times

N—-1
p:Z—FZZ@H@k—Fp@H@N
k=1

where H(ta Z;s, y) = (‘th - £2,7§)(T,£):(s,y)z(t7 x;s, y)

» Classically N — oo



First correction

The first term of the series reads

Z@Hz;5,y) = [ [pa Z(t,x57,2) (L2 — L3 Z(r, 235 8,y) dzdr
(%)

where

(*) ~ |Z — ’YS,T(y)|a

ey NGE R CEE ok NGEEN S

|Z®H(t,l‘,8,y)| S fts m fRd pA(t7$§7"a Z)p)\(T,Z; Svy)dZdr



However, because of the presence of the flow,
fRd p)\(ta 5T, Z)pA(T7 258, y)dZ S; Pr(1+¢) (ta x;s, y)v €= 6()‘a T) > 0.

Therefore we fail to control the iterated kernels H®* uniformly in k.



However, because of the presence of the flow,
fRd p)\(ta 5T, Z)pA(T7 258, y)dZ S; Pr(1+¢) (ta x;s, y)v €= 6()‘a T) > 0.

Therefore we fail to control the iterated kernels H®* uniformly in k.

Control of the remainder: By the Kernel estimate
HEV (¢, ;5,9) S (s — 1) 2 ' palt,55,9)

where « € (0, %] depends on the regularity of the coefficients, we have:

((p @ HEN)(t, 235, y)| S /ts(r — 1) F T Elpa(r, Xp4(2); 5,y)]dr.

» the expectation is controlled by a variational representation
formula by Boué and Dupuis;



Gradient bound

Assuming the lower bound: there exists some § depending on the
general assumptions s.t. py < p, where p is the density of the SDE
with o(t,z) = dlgxa-

» Assume t = 0 and for s € (0,7, we define

fl(s) ‘= sup |Vrp(0,$, 5,y)|/ﬁ(07$, Svy)
T,y



Gradient bound

Assuming the lower bound: there exists some § depending on the
general assumptions s.t. py < p, where p is the density of the SDE
with o(t,z) = dlgxa-

» Assume t = 0 and for s € (0,7, we define

fl(s) ‘= sup |Vrp(0,$, 5,y)|/ﬁ(07$, Svy)
T,y

» By a l-step Duhamel representation we have
|va(07 €, S, y)l < ‘VwZ(Oa z,s, y)| + ‘pr Y H(O, z,s, y)‘
Where



Moreover

Vapo HO.s)| < [ [ A0 H, 2z
S [ A0 =0 [ 0.5 2)p00, 5,
= ([ 700 =07 ) 05,50
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0



Moreover

Vapo HO.s)| < [ [ A0 H, 2z
S [ A0 =0 [ 0.5 2)p00, 5,
= ([ 700 =07 ) 05,50

0

— A St [ -0 E R
0
and by the Volterra type Gronwall inequality, we obtain

Fi(s) S 572 = [Vup(0,2,5,9)| S s 2p(0, 2, 5, 1) (7)



IT - Kynetic type systems



Consider the 2d-dimensional system of SDEs

dX} = Fy(t, X}, XP)dt + o (t, X}, X2)dW,,
dX? = Fy(t, X}, X2)dt,



Consider the 2d-dimensional system of SDEs

dX} = Fy(t, X}, XP)dt + o (t, X}, X2)dW,,
dX? = Fy(t, X}, X2)dt,

Assuming some kind of weak Hérmander condition:

> oo* > 0 uniformly

» V., F» has full rank

Applications:

» physics: Hamiltonian systems

H(x) = V(22) +|21*/2 = F(x) = (-=Va,V(22), 21)"

» finance: path dependent contracts



Kinetic Gaussian case

F1 =0 and Fg(t,th,XtQ) = th

dX} =dW,;, dX?=X!dt, t>0.

is a Gaussian process with mean and covariance matrix given by

¢
Ye(x) = (21,22 + 21t), &=<ﬁ§>>OW>o

2 3
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F1 =0 and Fg(t,th,XtQ) = th
dX} =dW,;, dX?=X!dt, t>0.

is a Gaussian process with mean and covariance matrix given by

¢
Ye(x) = (21,22 + 21t), &=<ﬁ§>>OW>o

2 3

= the process admits a density for every ¢ > 0, explicitly given by

y e (Aﬁz)dexp (—;IKt%(y - %(X))l2>



t 0
Kt ~ (O t3> = Tt~

» Non-diffusive time-scale



t 0
Kt ~ (O t3> = Tt~

» Non-diffusive time-scale

» Different growth-rates in the two components

V(0.3 3)] < | (K, P V200) K, (1) ) [p(0,x:1.)
1 1, -1
< o (ot v )

=: %g,\(t,y - ’Yt(x))

t'l,



Linear drifts

» Weber (1951), Polidoro (1994), Di Francesco-Pascucci (2005),
Lucertini-Pagliarani-Pascucci (2022)

» Pascucci-P. (2022)

Regular, nonlinear drift
» Delarue-Menozzi (2010)
> Pigato (2022)

Regularization by noise
» Fedrizzi-Flandoli-Priola-Vovelle (2017)
» X.Zhang (2018)
» Chaudru de Raynal (2018), CdR-Honoré-Menozzi (2021-2022)



Functional framework
» Homogeneous norm
[Xla = |o| +|aal® = [Tixla =tlxla (9)
» Corresponding Anisotropic Holder spaces: Cf;ra(]RQd; R?)
[[£llgs e = e 1 (s z2)lleive + sup [[f(z1,-)llco+ars < oo

r1€ER

fecq = |f(x) = f(¥)| < callflleglx —yla
fecg™ = |f(x) = (f(y) + Var f¥) (@1 — 1)) | < call fllerralx —ylg™
=T f(x,y)




Assume

» For some « € (0,1], kg > 1
Ko €] < (oo™ (t,%)€,€) < Kolé], €€R?

and
lo(t, )les (2 ray < Ko-

» F} is a measurable function with linear growth
[F1(t,0)] < k1, [Fu(t,x) = Fi(ty)| < sa(1+ [x —y])
» For some « € (0,1] and k1, ko > 0, it holds that
| Fa(t, -)||cé+u(R2d7Rd) < Ka.
Moreover, there exists a closed convex subset £ C GL4(R) (the

set of all invertible d x d matrices) such that V,, F5(¢,x) € & for
all t > 0 and x € R2,



Theorem (Chaudru de Raynal, Menozzi, P., Zhang 2022)

3! weak solution which admits a transition density p(t, x;s,y),
0<t<s<T,x,y € R?. Moreover, p(t,x;s,y) enjoys the following
estimates:

(i) (Two sides estimates)

Co ' gasr (5 = ts(%) = y) < plt.x55,5) < Cogag (5 — t:7e,s(%) = ¥) -

(ii) (Gradient estimate in x7)
_1
|v$1p(t X; 8 y)| ~Ch (S - t) 29n (S - ta’yt,s(x> - y) :
(iii) (Holder estimate in z) Let n9,m € (0,1), 7 =0,1
7 / < 1\Mj —m

’V p(t,x;8,y) — Vzlp(t,x;s,y)‘wcj Ix —x'|{(s—t)" 2

< (o, (s = 17900 () = ¥) + 90, (5 = £700(x) =) ).



About the flow:
> “Yg4(x) = F(s,7s+(x))” is not generally well posed.

~t,s(x) can be replaced by any Peano flow associated solving:

%t,s(x) = F(8,%,s(%)), (%) =%,

where

Fs,x) = ([Fi(s, ) x pr] (%), Fa(t, %))

Equivalently 4, s(x) associated with

F(s,x) = ([Fi(s, ") * p1)(x), [F2(s, ) * ps_yjs/2)(x)).
We have

T, (s (x) — A1,s(x))] < C



Perturbative argument

» Consider a linear approximation of the associated Kolmogorov
operator: for fixed (7,£) € RT x R4

T 1 * T
]Ct €= 5'51‘ (UU (t7 ’Yt,‘r(&))vil) + <F ’s(tv '7:)7 V> + 8t

F78(t,) s = F(t,7,-(8)) + (DF) (£, 7,0 (€)) (x = 7,7 (€)) ,

Odxd  Oaxd
DF = .
(leFz ded)

where



Perturbative argument

» Consider a linear approximation of the associated Kolmogorov
operator: for fixed (7,£) € RT x R4

T 1 * T
K[* = 5t (00" (6 (€))VE,) + (F74(4,2), V) + 0,

F78(t,) s = F(t,7,-(8)) + (DF) (£, 7,0 (€)) (x = 7,7 (€)) ,

Odxd  Oaxd
DF = .
(leFz ded)

where

> First step approzimation of p: Z(t,x;s,y) := p*Y)(t,%;5,y)

Z(t,x;5,y) ~ ga(s —t,7,5(X) —y)

VI Z(t,x;5,5)| S (s — 1) 2ga(s — t,71,6(X) — y)
_3
Ve, Z(t,%;8,5) S (s =) 2gx(s — t,7,5(x) —¥)



First step expansion (Duhamel)
p=Z+po((K-K)Z
In general

|1 =tz 1
|za| < t2 = [pla=e
2l X

Diffusion perturbation

ly —n(®)la
t

~t21

Drift perturbation (second component)

ly — 7e(x) ii-m
3

\ ~ 2!
ts



Theorem (Chaudru de Raynal, Menozzi, P., Zhang 2022)

i) If, for some a > 0,

ii)

[Fy(t,)leg < k1 t>0
— Existence and estimates for the second order derivative

(2 < @)

For gradient estimates in the degenerate component x5, we need
extra regularity, since for kinetic operators we only have 2/3-gain
of regularity in x5

If 0 and F} also satisfy that

lta

lo(t,x) —o(t,y)| < kol|z1 —y1| + 22 — 92| %)
1ta
[F1(t,x) — Fi(t,y)| < si(lzn —yi]® + |22 — 92| ),

— Existence and estimates for the first order derivative in xo



> (Gradient estimate in x3)
_3
[V, (%58, y)| Sos (8 =) 7200 (s = £71,5(%) =) -

» (Holder estimate in z) For 73 < «

_ 3+4mn3

‘Vﬂizp(t7x; 5, y) - vzgp(tv X/; S, y)| 504 |X - X/|ZB(S - t) 2
% (90 (5 = 170500 =3) + 90 (5 = 1. 705() = ¥) ).
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