Heat kernel estimates for Brownian SDEs with low regularity coefficients and unbounded drift

Antonello Pesce ¹
(joint works with Stephane Menozzi and Xicheng Zhang)

10 July 2025

Berlin

¹University of Bologna, Italy

I - Non degenerate systems

Consider the d-dimensional diffusion

$$dX_s = b(s, X_s)ds + \sigma(s, X_s)dW_s, \quad s \ge 0, \ X_0 = x. \tag{1}$$

Consider the d-dimensional diffusion

$$dX_s = b(s, X_s)ds + \sigma(s, X_s)dW_s, \quad s \ge 0, \ X_0 = x. \tag{1}$$

Bounded case: For $\sigma\sigma^* > 0$, for bounded and Hölder continuous coefficients, it is well known that there exists a unique weak solution which admits a density p(0, x, s, y),

$$C^{-1}\Gamma_{\lambda^{-1}}(s, x - y) \le p(0, x; s, y) \le C\Gamma_{\lambda}(s, x - y)$$
(2)

$$|\nabla_x^j p(0, x, s, y)| \le C s^{-\frac{j}{2}} \Gamma_\lambda(s, x - y), \quad j = 1, 2,$$
 (3)

for any $x, y \in \mathbb{R}^d$ and $s \in [0, T]$, where

$$\Gamma_{\lambda}(s,y) := s^{-\frac{d}{2}} \exp\left(-y^2/(\lambda s)\right), \quad \lambda \ge 1, s > 0.$$

What can we expect for *unbounded* and possibly *irregular* drifts?

Example: Ornstein-Uhlenbeck (OU) process

$$dX_s = X_s ds + dW_s, \quad X_0 = x,$$

has explicit density

$$p_{\text{OU}}(0, x, s, y) = (\pi(e^{2s} - 1)/s)^{-d/2} \Gamma_{(e^{2s} - 1)/s}(s, e^{s} x - y).$$

Primer: density estimates with smooth *Lipschitz* continuous drifts by *Delarue and Menozzi* (2010)

$$C^{-1}\Gamma_{\lambda^{-1}}(s,\gamma_s(x)-y) \le p(0,x;s,y) \le C\Gamma_{\lambda}(s,\gamma_s(x)-y), \tag{4}$$

where C, λ depend both on the constants in the Assumptions and T, with

$$\dot{\gamma}_s(x) = b(s, \gamma_s(x)), \quad \gamma_0(x) = x.$$

If the drift b is bounded we recover the usual deviation |x-y| (as Friedman): indeed

$$s^{-\frac{1}{2}}|x-y|-\|b\|_{\infty}s^{\frac{1}{2}} \le s^{-\frac{1}{2}}|\gamma_s(x)-y| \le s^{-\frac{1}{2}}|x-y|+\|b\|_{\infty}s^{\frac{1}{2}}.$$

Assumptions:

▶ (Non degeneracy). There exists a constant $\kappa_0 \geq 1$, such that

$$\kappa_0^{-1}|y|^2 \le \langle \sigma\sigma^*(t,x)y,y\rangle \le \kappa_0|y|^2, \quad x,y \in \mathbb{R}^d, \ t \ge 0,$$

and for some $\alpha \in (0,1]$, $\sigma \in C_{0,\infty}^{\alpha}$, namely

$$|\sigma(t,x) - \sigma(t,y)| \le \kappa_0 |x-y|^{\alpha}, \quad t \ge 0, \ x,y \in \mathbb{R}^d.$$

Assumptions:

▶ (Non degeneracy). There exists a constant $\kappa_0 \geq 1$, such that

$$\kappa_0^{-1}|y|^2 \le \langle \sigma\sigma^*(t,x)y,y\rangle \le \kappa_0|y|^2, \quad x,y \in \mathbb{R}^d, \ t \ge 0,$$

and for some $\alpha \in (0,1]$, $\sigma \in C_{0,\infty}^{\alpha}$, namely

$$|\sigma(t,x) - \sigma(t,y)| \le \kappa_0 |x - y|^{\alpha}, \quad t \ge 0, \ x, y \in \mathbb{R}^d.$$

► There exist positive constant $\kappa_1 > 0$ and $\beta \in [0, 1]$ such that for all $x, y \in \mathbb{R}^d$ and $t \geq 0$,

$$|b(t,0)| \le \kappa_1, |b(t,x) - b(t,y)| \le \kappa_1(|x-y|^{\beta} \vee |x-y|).$$

Particular cases:

- For $\beta = 0$, b can possibly be an unbounded measurable function with linear growth.
- ▶ The drift $b(t,x) = c_1(t) + c_2(t)|x|^{\beta}$, $\beta \in [0,1]$, c_1, c_2 bounded measurable functions of time, enter this class.

Theorem (Menozzi, P., Zhang 2020)

For any T > 0, $0 \le t < s \le T$ and $x \in \mathbb{R}^d$, the unique weak solution $X_{t,s}(x)$ of (1) starting from x at time t admits a density p(t,x;s,y) which is continuous in $x,y \in \mathbb{R}^d$. Moreover, p(t,x;s,y) enjoys the following estimates:

► (Two-sided density bounds)

$$C_0^{-1}\Gamma_{\lambda_0^{-1}}(t-s,\gamma_{t,s}(x)-y) \le p(t,x;s,y) \le C_0\Gamma_{\lambda_0}(s-t,\gamma_{t,s}(x)-y);$$

ightharpoonup (Gradient estimate in x)

$$|\nabla_x p(t, x; s, y)| \le C_1(s - t)^{-\frac{1}{2}} \Gamma_{\lambda_1}(s - t, \gamma_{t,s}(x) - y);$$

• (Second order derivative estimate in x) If $\beta \in (0,1]$

$$\left|\nabla_{x}^{2}p(t, x; s, y)\right| \le C_{2}(s - t)^{-1}\Gamma_{\lambda_{2}}(s - t, \gamma_{t, s}(x) - x);$$

• (Gradient estimate in y) If $\beta \in (0,1]$ and for some $\alpha \in (0,1)$ and $\kappa_2 > 0$,

$$\|\nabla\sigma\|_{\infty} \le \kappa_2, \ |\nabla\sigma(t,x) - \nabla\sigma(t,y)| \le \kappa_2|x-y|^{\alpha},$$

then

$$|\nabla_y p(t, x; s, y)| \le C_3(s - t)^{-\frac{1}{2}} \Gamma_{\lambda_3}(s - t, \gamma_{t,s}(x) - y).$$

Note that " $\dot{\gamma}_t(x) = b(t, \gamma_t(x))$ " is not generally well posed.

Therefore we introduced the mollified (in space) drift

$$b_{\varepsilon}(t,x) = b(t,\cdot) * \varrho_{\varepsilon}(x),$$

where $\rho_{\varepsilon}(x) := \varepsilon^{-d} \rho(\varepsilon^{-1}x)$, and ρ is a test function supported in the unit ball with unit integral.

Importantly we can prove the following equivalence between mollified flows: $\forall \varepsilon \in (0, 1]$, there exists $C = C(T, \kappa_1, d) \ge 1$ s.t

$$|\gamma_{t,s}^{(1)}(x)-y|+|s-t| \asymp_C |\gamma_{t,s}^{(\varepsilon)}(x)-y|+|s-t| \asymp_C |x-\gamma_{s,t}^{(\varepsilon)}(y)|+|s-t| \tag{5}$$

Note that " $\dot{\gamma}_t(x) = b(t, \gamma_t(x))$ " is not generally well posed.

Therefore we introduced the mollified (in space) drift

$$b_{\varepsilon}(t,x) = b(t,\cdot) * \varrho_{\varepsilon}(x),$$

where $\rho_{\varepsilon}(x) := \varepsilon^{-d} \rho(\varepsilon^{-1}x)$, and ρ is a test function supported in the unit ball with unit integral.

Importantly we can prove the following equivalence between mollified flows: $\forall \varepsilon \in (0,1]$, there exists $C = C(T, \kappa_1, d) \ge 1$ s.t

$$|\gamma_{t,s}^{(1)}(x) - y| + |s - t| \simeq_C |\gamma_{t,s}^{(\varepsilon)}(x) - y| + |s - t| \simeq_C |x - \gamma_{s,t}^{(\varepsilon)}(y)| + |s - t|$$

$$\tag{5}$$

▶ Similarly, if $\beta > 0$, $\gamma_{t,s}^{(\varepsilon)}(x)$ can be replaced as well by any Peano flow $\gamma_{t,s}(x)$.

▶ First work in a regularized setting: in this case there exists the transition density p(t, x; s, y) which is C^{∞} - smooth in variables x, y for all t < s, by Hörmander's theorem, and is the fundamental solution of

$$\partial_t u + \mathcal{L}_{t,x} u = 0, \quad p(t, \cdot; s, y) \longrightarrow \delta_y(\cdot) \quad t \uparrow s,$$
 (6)

where

$$\mathcal{L}_{t,x}f(x) = \frac{1}{2} \operatorname{tr} \left(\sigma \sigma^*(t,x) \nabla_x^2 f(x) \right) + \langle b(t,x), \nabla_x f(x) \rangle.$$

▶ Derive bounds that are actually independent on the regularization procedure

Drift adapted parametrix method

Let $\Gamma^{\tau,\xi}(t,x;s,y)$ the Gaussian fundamental solution for the operator

$$\partial_t + \mathcal{L}_{t,x}^{\tau,\xi} := \partial_t + \frac{1}{2} \sum_{i} \sigma_i \sigma_j(t, \gamma_{t,\tau}(\xi)) \partial_i \partial_j + \sum_{i} b_i(t, \gamma_{t,\tau}(\xi)) \partial_i$$

> parametrix as: $Z(t, x; s, y) := \Gamma^{s,y}(t, x; s, y)$. In particular

$$Z(t, x; s, y) \le C_0 \Gamma_{\lambda}(s - t, \gamma_{t,s}(x) - y) =: p_{\lambda}(t, x; s, y).$$

Drift adapted parametrix method

Let $\Gamma^{\tau,\xi}(t,x;s,y)$ the Gaussian fundamental solution for the operator

$$\partial_t + \mathcal{L}_{t,x}^{\tau,\xi} := \partial_t + \frac{1}{2} \sum_{i} \sigma_i \sigma_j(t, \gamma_{t,\tau}(\xi)) \partial_i \partial_j + \sum_{i} b_i(t, \gamma_{t,\tau}(\xi)) \partial_i$$

Parametrix as: $Z(t, x; s, y) := \Gamma^{s,y}(t, x; s, y)$. In particular

$$Z(t, x; s, y) \le C_0 \Gamma_{\lambda}(s - t, \gamma_{t,s}(x) - y) =: p_{\lambda}(t, x; s, y).$$

By iterating the Duhamel formula N times

$$p = Z + \sum_{k=1}^{N-1} Z \otimes H^{\otimes k} + p \otimes H^{\otimes N}$$

where
$$H(t, x; s, y) = (\mathcal{L}_{t,x} - \mathcal{L}_{t,x}^{\tau,\xi})_{(\tau,\xi)=(s,y)} Z(t, x; s, y)$$

ightharpoonup Classically $N \longrightarrow \infty$

First correction

The first term of the series reads

$$Z \otimes H(t, x; s, y) = \int_{t}^{s} \int_{\mathbb{R}^{d}} Z(t, x; r, z) \underbrace{\left(\mathcal{L}_{r, z} - \mathcal{L}_{r, z}^{s, y}\right) Z(r, z; s, y)}_{(*)} dz dr$$

where

$$(*) \sim \frac{|z - \gamma_{s,r}(y)|^{\alpha}}{s - r} p_{\lambda}(r, z; s, y) \sim (s - r)^{\frac{\alpha}{2} - 1} p_{\lambda}(r, z; s, y).$$

$$\Downarrow$$

$$|Z \otimes H(t,x;s,y)| \lesssim \int_t^s \frac{1}{(s-r)^{1-\alpha/2}} \int_{\mathbb{R}^d} p_{\lambda}(t,x;r,z) p_{\lambda}(r,z;s,y) dz dr$$

However, because of the presence of the flow,

$$\int_{\mathbb{R}^d} p_{\lambda}(t, x; r, z) p_{\lambda}(r, z; s, y) dz \lesssim p_{\lambda(1+\varepsilon)}(t, x; s, y), \quad \varepsilon = \varepsilon(\lambda, T) > 0.$$

Therefore we fail to control the iterated kernels $H^{\otimes k}$ uniformly in k.

However, because of the presence of the flow,

$$\int_{\mathbb{R}^d} p_{\lambda}(t, x; r, z) p_{\lambda}(r, z; s, y) dz \lesssim p_{\lambda(1+\varepsilon)}(t, x; s, y), \quad \varepsilon = \varepsilon(\lambda, T) > 0.$$

Therefore we fail to control the iterated kernels $H^{\otimes k}$ uniformly in k.

Control of the remainder: By the Kernel estimate

$$H^{\otimes N}(t,x;s,y) \lesssim (s-t)^{\frac{N\alpha}{2}-1} p_{\lambda}(t,x;s,y)$$

where $\alpha \in (0, \frac{1}{2}]$ depends on the regularity of the coefficients, we have:

$$|(p \otimes H^{\otimes N})(t,x;s,y)| \lesssim \int_t^s (r-t)^{\frac{N\alpha}{2}-1} \mathbb{E}[p_{\lambda}(r,X_{r,t}(x);s,y)] dr.$$

▶ the expectation is controlled by a variational representation formula by Boué and Dupuis;

Gradient bound

Assuming the lower bound: there exists some δ depending on the general assumptions s.t. $p_{\lambda} \leq \bar{p}$, where \bar{p} is the density of the SDE with $\sigma(t,x) \equiv \delta \mathbb{I}_{d \times d}$.

Assume t = 0 and for $s \in (0, T]$, we define

$$f_1(s) := \sup_{x,y} |\nabla_x p(0,x,s,y)|/\bar{p}(0,x,s,y)$$

Gradient bound

Assuming the lower bound: there exists some δ depending on the general assumptions s.t. $p_{\lambda} \leq \bar{p}$, where \bar{p} is the density of the SDE with $\sigma(t, x) \equiv \delta \mathbb{I}_{d \times d}$.

Assume t = 0 and for $s \in (0, T]$, we define

$$f_1(s) := \sup_{x,y} |\nabla_x p(0,x,s,y)|/\bar{p}(0,x,s,y)$$

▶ By a 1-step Duhamel representation we have

$$|\nabla_x p(0, x, s, y)| \le |\nabla_x Z(0, x, s, y)| + |\nabla_x p \otimes H(0, x, s, y)|$$

Where

$$|\nabla_x Z(0, x, s, y)| \lesssim s^{-1/2} p_\lambda(0, x, s, y) \lesssim s^{-1/2} \bar{p}(0, x, s, y).$$

Moreover

$$\begin{aligned} |\nabla_{x} p \otimes H(0, x, s, y)| &\leq \int_{0}^{s} \int_{\mathbb{R}^{d}} f_{1}(r) \bar{p}(0, x, r, z) |H(r, z, s, y)| dz dr \\ &\lesssim \int_{0}^{s} f_{1}(r) (s - r)^{-1 + \frac{\alpha}{2}} \int_{\mathbb{R}^{d}} \bar{p}(0, x, r, z) \bar{p}(r, z, s, y) dz dr \\ &= \left(\int_{0}^{s} f_{1}(r) (s - r)^{-1 + \frac{\alpha}{2}} dr \right) \bar{p}(0, x, s, y), \end{aligned}$$

Moreover

$$|\nabla_{x} p \otimes H(0, x, s, y)| \leq \int_{0}^{s} \int_{\mathbb{R}^{d}} f_{1}(r) \bar{p}(0, x, r, z) |H(r, z, s, y)| dz dr$$

$$\lesssim \int_{0}^{s} f_{1}(r) (s - r)^{-1 + \frac{\alpha}{2}} \int_{\mathbb{R}^{d}} \bar{p}(0, x, r, z) \bar{p}(r, z, s, y) dz dr$$

$$= \left(\int_{0}^{s} f_{1}(r) (s - r)^{-1 + \frac{\alpha}{2}} dr \right) \bar{p}(0, x, s, y),$$

$$\Longrightarrow f_{1}(s) \lesssim s^{-\frac{1}{2}} + \int_{0}^{s} (s - r)^{-1 + \frac{\alpha}{2}} f_{1}(r) dr$$

Moreover

$$\begin{aligned} |\nabla_{x} p \otimes H(0, x, s, y)| &\leq \int_{0}^{s} \int_{\mathbb{R}^{d}} f_{1}(r) \bar{p}(0, x, r, z) |H(r, z, s, y)| dz dr \\ &\lesssim \int_{0}^{s} f_{1}(r) (s - r)^{-1 + \frac{\alpha}{2}} \int_{\mathbb{R}^{d}} \bar{p}(0, x, r, z) \bar{p}(r, z, s, y) dz dr \\ &= \left(\int_{0}^{s} f_{1}(r) (s - r)^{-1 + \frac{\alpha}{2}} dr \right) \bar{p}(0, x, s, y), \end{aligned}$$

$$\implies f_1(s) \lesssim s^{-\frac{1}{2}} + \int_0^s (s-r)^{-1+\frac{\alpha}{2}} f_1(r) dr$$

and by the Volterra type Gronwall inequality, we obtain

$$f_1(s) \lesssim s^{-\frac{1}{2}} \Rightarrow |\nabla_x p(0, x, s, y)| \lesssim s^{-\frac{1}{2}} \bar{p}(0, x, s, y).$$
 (7)

II - Kynetic type systems

Consider the 2d-dimensional system of SDEs

$$\begin{cases} dX_t^1 = F_1(t, X_t^1, X_t^2)dt + \sigma(t, X_t^1, X_t^2)dW_t, \\ dX_t^2 = F_2(t, X_t^1, X_t^2)dt, \end{cases}$$
(8)

Consider the 2d-dimensional system of SDEs

$$\begin{cases}
dX_t^1 = F_1(t, X_t^1, X_t^2)dt + \sigma(t, X_t^1, X_t^2)dW_t, \\
dX_t^2 = F_2(t, X_t^1, X_t^2)dt,
\end{cases}$$
(8)

Assuming some kind of weak Hörmander condition:

- $ightharpoonup \sigma \sigma^* > 0$ uniformly
- $ightharpoonup
 abla_{x_1} F_2$ has full rank

Applications:

physics: Hamiltonian systems

$$H(\mathbf{x}) = V(x_2) + |x_1|^2 / 2 \Longrightarrow F_H(\mathbf{x}) = (-\nabla_{x_2} V(x_2), x_1)^*$$

▶ finance: path dependent contracts

Kinetic Gaussian case

$$F_1\equiv 0$$
 and $F_2(t,X^1_t,X^2_t)=X^1_t$
$$dX^1_t=dW_t,\ \ dX^2_t=X^1_tdt,\qquad t\geq 0.$$

is a Gaussian process with mean and covariance matrix given by

$$\gamma_t(\mathbf{x}) = (x_1, x_2 + x_1 t), \quad \mathbf{K}_t = \begin{pmatrix} t & \frac{t^2}{2} \\ \frac{t^2}{2} & \frac{t^3}{3} \end{pmatrix} > 0 \quad \forall t > 0$$

Kinetic Gaussian case

$$F_1\equiv 0$$
 and $F_2(t,X^1_t,X^2_t)=X^1_t$
$$dX^1_t=dW_t,\ \ dX^2_t=X^1_tdt,\qquad t\geq 0.$$

is a Gaussian process with mean and covariance matrix given by

$$\gamma_t(\mathbf{x}) = (x_1, x_2 + x_1 t), \quad \mathbf{K}_t = \begin{pmatrix} t & \frac{t^2}{2} \\ \frac{t^2}{2} & \frac{t^3}{3} \end{pmatrix} > 0 \quad \forall t > 0$$

 \Rightarrow the process admits a density for every t > 0, explicitly given by

$$\mathbf{y} \mapsto \left(\frac{\sqrt{3}}{\lambda \pi t^2}\right)^d \exp\left(-\frac{1}{2}|\mathbf{K}_t^{-\frac{1}{2}}(\mathbf{y} - \gamma_t(\mathbf{x}))|^2\right)$$

$$\mathbf{K}_t \sim \begin{pmatrix} t & 0 \\ 0 & t^3 \end{pmatrix} =: \mathbb{T}_t.$$

► Non-diffusive time-scale

$$\mathbf{K}_t \sim \begin{pmatrix} t & 0 \\ 0 & t^3 \end{pmatrix} =: \mathbb{T}_t.$$

- ► Non-diffusive time-scale
- ▶ Different growth-rates in the two components

$$\begin{split} |\nabla_{x_i} p(0, \mathbf{x}; t, \mathbf{y})| &\leq |\left((\mathbf{K}_t^{-\frac{1}{2}} \nabla \gamma_t(\mathbf{x}))^* \mathbf{K}_t^{-\frac{1}{2}} (\gamma_t(\mathbf{x}) - \mathbf{y}) \right)_i |p(0, \mathbf{x}; t, \mathbf{y}) \\ &\lesssim \frac{1}{t^{i - \frac{1}{2} + 2d}} \exp\left(-\frac{1}{2\lambda} |\mathbb{T}_t^{-\frac{1}{2}} (\mathbf{y} - \gamma_t(\mathbf{x}))|^2 \right) \\ &=: \frac{1}{t^{i - \frac{1}{2}}} g_{\lambda}(t, \mathbf{y} - \gamma_t(\mathbf{x})) \end{split}$$

Linear drifts

- ▶ Weber (1951), Polidoro (1994), Di Francesco-Pascucci (2005), Lucertini-Pagliarani-Pascucci (2022)
- ► Pascucci-P. (2022)

Regular, nonlinear drift

- ▶ Delarue-Menozzi (2010)
- ▶ Pigato (2022)

Regularization by noise

- ► Fedrizzi-Flandoli-Priola-Vovelle (2017)
- ► X.Zhang (2018)
- ► Chaudru de Raynal (2018), CdR-Honoré-Menozzi (2021-2022)

Functional framework

► Homogeneous norm

$$|\mathbf{x}|_{\mathbf{d}} := |x_1| + |x_2|^{\frac{1}{3}} \implies |\mathbb{T}_t \mathbf{x}|_{\mathbf{d}} = t|\mathbf{x}|_{\mathbf{d}}$$
 (9)

► Corresponding Anisotropic Hölder spaces: $C_{\mathbf{d}}^{j+\alpha}(\mathbb{R}^{2d};\mathbb{R}^l)$

$$||f||_{\mathcal{C}_{\mathbf{d}}^{j+\alpha}} := \sup_{x_2 \in \mathbb{R}^d} ||f(\cdot, x_2)||_{\mathcal{C}^{j+\alpha}} + \sup_{x_1 \in \mathbb{R}^d} ||f(x_1, \cdot)||_{\mathcal{C}^{(j+\alpha)/3}} < \infty.$$

$$f \in \mathcal{C}_{\mathbf{d}}^{\alpha} \implies |f(\mathbf{x}) - f(\mathbf{y})| \le c_{\alpha} ||f||_{\mathcal{C}_{\mathbf{d}}^{\alpha}} |\mathbf{x} - \mathbf{y}|_{\mathbf{d}}^{\alpha}$$

$$f \in \mathcal{C}_{\mathbf{d}}^{1+\alpha} \implies |f(\mathbf{x}) - \underbrace{(f(\mathbf{y}) + \nabla_{x_{1}} f(\mathbf{y})(x_{1} - y_{1}))}_{=:\mathcal{T}_{1} f(\mathbf{x}, \mathbf{y})}| \le c_{\alpha} ||f||_{\mathcal{C}_{\mathbf{d}}^{1+\alpha}} |\mathbf{x} - \mathbf{y}|_{\mathbf{d}}^{1+\alpha}$$

Assume

▶ For some $\alpha \in (0,1]$, $\kappa_0 \ge 1$

$$\kappa_0^{-1}|\xi| \le \langle \sigma\sigma^*(t, \mathbf{x})\xi, \xi \rangle \le \kappa_0|\xi|, \quad \xi \in \mathbb{R}^d$$

and

$$\|\sigma(t,\cdot)\|_{\mathcal{C}^{\alpha}_{\mathbf{d}}(\mathbb{R}^{2d},\mathbb{R}^d)} < \kappa_0.$$

 \triangleright F_1 is a measurable function with linear growth

$$|F_1(t, \mathbf{0})| \le \kappa_1, \quad |F_1(t, \mathbf{x}) - F_1(t, \mathbf{y})| \le \kappa_1(1 + |\mathbf{x} - \mathbf{y}|)$$

▶ For some $\alpha \in (0,1]$ and $\kappa_1, \kappa_2 > 0$, it holds that

$$||F_2(t,\cdot)||_{\mathcal{C}^{1+\alpha}_{\mathbf{d}}(\mathbb{R}^{2d},\mathbb{R}^d)} \le \kappa_2.$$

Moreover, there exists a closed convex subset $\mathcal{E} \subset GL_d(\mathbb{R})$ (the set of all invertible $d \times d$ matrices) such that $\nabla_{x_1} F_2(t, \mathbf{x}) \in \mathcal{E}$ for all $t \geq 0$ and $\mathbf{x} \in \mathbb{R}^{2d}$.

Theorem (Chaudru de Raynal, Menozzi, P., Zhang 2022)

 $\exists!$ weak solution which admits a transition density $p(t, \mathbf{x}; s, \mathbf{y})$, $0 \le t < s \le T$, $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{2d}$. Moreover, $p(t, \mathbf{x}; s, \mathbf{y})$ enjoys the following estimates:

(i) (Two sides estimates)

$$C_0^{-1} g_{\lambda_0^{-1}}(s-t, \gamma_{t,s}(\mathbf{x}) - \mathbf{y}) \le p(t, \mathbf{x}; s, \mathbf{y}) \le C_0 g_{\lambda_0}(s-t, \gamma_{t,s}(\mathbf{x}) - \mathbf{y}).$$

(ii) (Gradient estimate in x_1)

$$|\nabla_{x_1} p(t, \mathbf{x}; s, \mathbf{y})| \lesssim_{C_1} (s - t)^{-\frac{1}{2}} g_{\lambda_1} \left(s - t, \gamma_{t, s}(\mathbf{x}) - \mathbf{y} \right).$$

(iii) (Hölder estimate in x) Let $\eta_0, \eta_1 \in (0, 1), j = 0, 1$

$$\left| \nabla_{x_1}^j p(t, \mathbf{x}; s, \mathbf{y}) - \nabla_{x_1}^j p(t, \mathbf{x}'; s, \mathbf{y}) \right| \lesssim_{C_j} |\mathbf{x} - \mathbf{x}'|_{\mathbf{d}}^{\eta_j} (s - t)^{-\frac{j + \eta_j}{2}} \times \left(g_{\lambda_j} \left(s - t, \gamma_{t,s}(\mathbf{x}) - \mathbf{y} \right) + g_{\lambda_j} \left(s - t, \gamma_{t,s}(\mathbf{x}') - \mathbf{y} \right) \right).$$

About the flow:

• " $\dot{\gamma}_{s,t}(\mathbf{x}) = F(s, \gamma_{s,t}(\mathbf{x}))$ " is not generally well posed.

 $\gamma_{t,s}(x)$ can be replaced by any Peano flow associated solving:

$$\dot{\widetilde{\gamma}}_{t,s}(\mathbf{x}) = \widetilde{F}(s, \widetilde{\gamma}_{t,s}(\mathbf{x})), \quad \gamma_{t,t}(\mathbf{x}) = \mathbf{x},$$

where

$$\widetilde{F}(s, \mathbf{x}) = ([F_1(s, \cdot) * \rho_1](\mathbf{x}), F_2(t, \mathbf{x})).$$

Equivalently $\hat{\gamma}_{t,s}(\mathbf{x})$ associated with

$$\hat{F}(s,\mathbf{x}) = ([F_1(s,\cdot) * \rho_1](\mathbf{x}), [F_2(s,\cdot) * \rho_{|s-t|^{3/2}}](\mathbf{x})).$$

We have

$$|\mathbb{T}_{s-t}^{-1}(\widetilde{\gamma}_{t,s}(\mathbf{x}) - \hat{\gamma}_{t,s}(\mathbf{x}))| \le C$$

Perturbative argument

Consider a linear approximation of the associated Kolmogorov operator: for fixed $(\tau, \boldsymbol{\xi}) \in \mathbb{R}^+ \times \mathbb{R}^{2d}$

$$\widetilde{\mathcal{K}}_{t}^{\tau,\boldsymbol{\xi}} = \frac{1}{2} \operatorname{tr} \left(\sigma \sigma^{*}(t, \gamma_{t,\tau}(\boldsymbol{\xi})) \nabla_{x_{1}}^{2} \right) + \langle \widetilde{F}^{\tau,\boldsymbol{\xi}}(t, x), \nabla \rangle + \partial_{t}$$

$$\widetilde{F}^{\tau,\boldsymbol{\xi}}(t, x) := F(t, \gamma_{t,\tau}(\boldsymbol{\xi})) + (DF) \left(t, \gamma_{t,\tau}(\boldsymbol{\xi}) \right) \left(\mathbf{x} - \gamma_{t,\tau}(\boldsymbol{\xi}) \right),$$

where

$$DF := \begin{pmatrix} 0_{d \times d} & 0_{d \times d} \\ \nabla_{x_1} F_2 & 0_{d \times d} \end{pmatrix}.$$

Perturbative argument

Consider a linear approximation of the associated Kolmogorov operator: for fixed $(\tau, \boldsymbol{\xi}) \in \mathbb{R}^+ \times \mathbb{R}^{2d}$

$$\begin{split} \widetilde{\mathcal{K}}_{t}^{\tau,\boldsymbol{\xi}} &= \frac{1}{2} \mathrm{tr} \left(\sigma \sigma^{*}(t,\gamma_{t,\tau}(\boldsymbol{\xi})) \nabla_{x_{1}}^{2} \right) + \langle \widetilde{F}^{\tau,\boldsymbol{\xi}}(t,x), \nabla \rangle + \partial_{t} \\ \widetilde{F}^{\tau,\boldsymbol{\xi}}(t,x) &:= F(t,\gamma_{t,\tau}(\boldsymbol{\xi})) + (DF) \left(t,\gamma_{t,\tau}(\boldsymbol{\xi}) \right) \left(\mathbf{x} - \gamma_{t,\tau}(\boldsymbol{\xi}) \right), \end{split}$$

where

$$DF := \begin{pmatrix} 0_{d \times d} & 0_{d \times d} \\ \nabla_{x_1} F_2 & 0_{d \times d} \end{pmatrix}.$$

First step approximation of p: $Z(t, \mathbf{x}; s, \mathbf{y}) := \widetilde{p}^{(s, \mathbf{y})}(t, \mathbf{x}; s, \mathbf{y})$

$$Z(t, \mathbf{x}; s, \mathbf{y}) \sim g_{\lambda}(s - t, \gamma_{t,s}(\mathbf{x}) - \mathbf{y})$$
$$|\nabla_{x_1}^j Z(t, \mathbf{x}; s, \mathbf{y})| \lesssim (s - t)^{-\frac{j}{2}} g_{\lambda}(s - t, \gamma_{t,s}(\mathbf{x}) - \mathbf{y})$$
$$|\nabla_{x_2} Z(t, \mathbf{x}; s, \mathbf{y})| \lesssim (s - t)^{-\frac{3}{2}} g_{\lambda}(s - t, \gamma_{t,s}(\mathbf{x}) - \mathbf{y})$$

► First step expansion (Duhamel)

$$p = Z + p \otimes (\mathcal{K} - \widetilde{\mathcal{K}})Z$$

In general

$$\begin{vmatrix} |x_1| \times t^{\frac{1}{2}} \\ |x_2| \times t^{\frac{3}{2}} \end{vmatrix} \implies |x|_{\mathbf{d}} \times t^{\frac{1}{2}}$$

Diffusion perturbation

$$\frac{|\mathbf{y} - \gamma_t(\mathbf{x})|_{\mathbf{d}}^{\alpha}}{t} \sim t^{\frac{\alpha}{2} - 1}$$

Drift perturbation (second component)

$$\frac{|\mathbf{y} - \gamma_t(\mathbf{x})|_{\mathbf{d}}^{1+\alpha}}{t^{\frac{3}{2}}} \sim t^{\frac{\alpha}{2}-1}$$

Theorem (Chaudru de Raynal, Menozzi, P., Zhang 2022)

i) If, for some $\alpha > 0$,

$$||F_1(t,\cdot)||_{\mathcal{C}^{\alpha}_{\mathbf{d}}} \le \kappa_1 \quad t \ge 0$$

 \implies Existence and estimates for the second order derivative $(\eta_2 < \alpha)$

ii) For gradient estimates in the degenerate component x_2 , we need extra regularity, since for kinetic operators we only have 2/3-gain of regularity in x_2

If σ and F_1 also satisfy that

$$|\sigma(t, \mathbf{x}) - \sigma(t, \mathbf{y})| \le \kappa_0(|x_1 - y_1| + |x_2 - y_2|^{\frac{1+\alpha}{3}})$$

$$|F_1(t, \mathbf{x}) - F_1(t, \mathbf{y})| \le \kappa_1(|x_1 - y_1|^{\alpha} + |x_2 - y_2|^{\frac{1+\alpha}{3}}),$$

 \implies Existence and estimates for the first order derivative in x_2

ightharpoonup (Gradient estimate in x_3)

$$|\nabla_{x_2} p(t, \mathbf{x}; s, \mathbf{y})| \lesssim_{C_3} (s - t)^{-\frac{3}{2}} g_{\lambda_3} (s - t, \gamma_{t,s}(\mathbf{x}) - \mathbf{y}).$$

▶ (Hölder estimate in x) For $\eta_3 < \alpha$

$$|\nabla_{x_2} p(t, \mathbf{x}; s, \mathbf{y}) - \nabla_{x_2} p(t, \mathbf{x}'; s, \mathbf{y})| \lesssim_{C_4} |\mathbf{x} - \mathbf{x}'|_{\mathbf{d}}^{\eta_3} (s - t)^{-\frac{3 + \eta_3}{2}} \times \left(g_{\lambda_4} \left(s - t, \gamma_{t,s}(\mathbf{x}) - \mathbf{y} \right) + g_{\lambda_4} \left(s - t, \gamma_{t,s}(\mathbf{x}') - \mathbf{y} \right) \right).$$

References

- ▶ Menozzi P. Zhang. Density and gradient estimates for non degenerate Brownian SDEs with unbounded measurable drift, J. Differ. Equ. (2021)
- ► Chaudru de Raynal Menozzi P. Zhang. Heat kernel and gradient estimates for kinetic SDEs with low regularity coefficients, Bull. Sci. Math. (2023)

Thank you for your attention