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I. Motivation: The Polya Urn process

• Urn with N balls

• B of them are black, and N−B of them are white.

The game:

1. Pick a ball Z from the urn

2. If Z is {
black: put it back & another black ball into the urn
white: put it back & another white ball into the urn

3. Repeat step 1.

What about the (random) proportion of the black balls on the long
run?



Formally:

• Urn with N balls

• B of them are black, and N−B of them are white.

• Step 0: Initial value

X0 :=
B

N

• Step 1: Given X0 sample Y1 ∼ BX0

X1 :=
B +Y1

N + 1

• Step n: Given Xn−1 sample Xn ∼ BXn−1

Xn :=
B +

∑n
i=1Yi

N + n



Polya urns have “balanced” increments (= they are “martingales”)

E[(Xn+1 −Xn) | σ(Xn, . . . ,X1)] = 0 a.s.

Easy check
(N + n + 1)E[Xn+1 −Xn | σ(Xn, . . . ,X1)]

= E[(B +

n+1∑
i=1

Yi)−
N + n + 1

N + n
(B +

n∑
i=1

Yi) | σ(Xn, . . . ,X1)]

= E[(B +

n+1∑
i=1

Yi)−
N + n

N + n
(B +

n∑
i=1

Yi)−
1

N + n
(B +

n∑
i=1

Yi) | σ(Xn, . . . ,X1)]

= E[(B +

n+1∑
i=1

Yi)− (B +

n∑
i=1

Yi)−Xn | σ(Xn, . . . , )]

= E[Yn+1︸ ︷︷ ︸
∼BXn

| σ(Xn, . . . ,X1)]−Xn = Xn −Xn = 0.



Moreover their increments decrease a.s. like 1
n



Hence Xn should converge a.s. ... to a random variable X∞



The limiting distribution is known

Xn → X∞ ∼ Beta(B,N−B)

and the it depends on the initial distribution B vs N−B

fX∞(x) = C · xB−1 · (1− x)N−B−1, x ∈ [0,1]

Note that its mean is given by the initial proportion E[X∞] = B
N

However, unclear how fast converges Xn → X∞.



¿How fast does Xn → X∞ converge ω-wise?



II. A device to prove a.s. convergence: the Borel-Cantelli Lemma

• (Ω,A,P) probability space

• (An)n∈N, An ∈ A family of events

O(ω) :=

∞∑
n=1

1(An)(ω) “overlap count”

M(ω) := max{n ∈ N | ω ∈ An} “last index”



“overlap count” O(ω)

“last index” M(ω)



• (Ω,A,P) probability space

• (An)n∈N, An ∈ A family of events

O(ω) :=

∞∑
n=1

1(An)(ω) “overlap count”

lim sup
n→∞

An = {ω ∈ Ω | O(ω) = ∞} “infinite overlap”



The first Borel-Cantelli lemma (1909 / 1917)

• (Ω,A,P) probability space

• (An)n∈N, An ∈ A family of events

Then ∞∑
n=1

P(An) < ∞

implies

P(lim sup
n→∞

An) = 0.



The first Borel-Cantelli lemma (1909 / 1917)

• (Ω,A,P) probability space

• (An)n∈N, An ∈ A family of events

Then ∞∑
n=1

P(An) < ∞

implies

P(lim sup
n→∞

An) = 0.

That is,

O < ∞ P− almost surely.

“The overlap depth is finite a.s.”



Proof 1: O < ∞ P−a.s.

For all N ∈ N

P(lim sup
n→∞

An)= P(
⋂
n∈N

⋃
m⩾n

Am)⩽ P(
N⋂

n=1

⋃
m⩾n

Am) = P(
∞⋃

m=N

Am)



Proof 1: O < ∞ P−a.s.

For all N ∈ N

P(lim sup
n→∞

An)= P(
⋂
n∈N

⋃
m⩾n

Am)⩽ P(
N⋂

n=1

⋃
m⩾n

Am) = P(
∞⋃

m=N

Am),

and P(
∞⋃

m=N

Am) ⩽
∞∑

m=N

P(Am) < ∞ by hypothesis.

=⇒ 0 ⩽ P(lim sup
n→∞

An) ⩽
∞∑

m=N

P(Am) for all N ∈ N

=⇒ 0 ⩽ P(lim sup
n→∞

An) ⩽ lim
N→∞

∞∑
m=N

P(Am) = 0



Proof 2: E[O] < ∞

By monotone convergence (Beppo-Levi)

E[O]= E[ lim
N→∞

N∑
n=1

1An
]

= lim
N→∞

E[
N∑

n=1

1An
]

= lim
N→∞

N∑
n=1

E[1An
]

= lim
N→∞

N∑
n=1

P(An)=

∞∑
n=1

P(An) < ∞ by hypothesis.

This implies O < ∞ with probability 1.



Observations:
• The distribution of O is well-known as Schuette-Nesbitt formula (Ger-

ber 1979)
P(O = k) =

∑
J⊂{1,...,N}

|J|=k

P(
⋂
j∈J

Aj)

The probabilities on the right-hand side are rarely at hand.

• However: many applications with P(An) ↘ 0 much faster, than merely
summable, with unknown P(

⋂
j∈JAj)!!

• Seems natural to translate the rate P(An) ↘ 0 into higher moments
of O (and M).



Example:
P(An) ⩽

1

nq
, given q > 1

Hence

E[O] =

∞∑
n=1

P(An) ⩽
∞∑
n=1

1

nq
< ∞.

Note: larger values of q yield smaller values of E[O].

−→ Instead: is such a relation also true under the expectation?
−→ That is, what about higher moments of O?

For instance, given q = 5, for which p > 0 do we get

E[O1+p] < ∞ ?



Questions:

i) Given only the rate of convergence P(An) ↘ 0 as n → ∞,

what can be said about higher moments of the overlap

O(ω) :=
∑
n

1(An) ?

ii) How can the results of i) be improved by the monotonicity (nested-
ness) of the events An ⊃ An+1?

iii) How about higher moments of the (random) last index

M(ω) := max{n ∈ N | ω ∈ An} ?



Lemma: Borel-Cantelli moment equation for nested events 1 2:

• (Ω,A,P)
• (An)n⩾n0 nested events: An ⊃ An+1, n ⩾ n0

• a = (an)n⩾n0 positive & nondecreasing

Then we have

E[Sa,n0(On0)] =

∞∑
n=n0

an · P(An)

for

Sa,n0(N) :=

N−1∑
n=0

an+n0, Sa,n0(0) = 0

1Luisa F. Estrada, Michael A. Högele: Moment estimates in the first Borel-Cantelli Lemma with applications to mean deviation frequencies. Statistics and Probability Letters 190 (2022) 109636,
https://doi.org/10.1016/j.spl.2022.109636

2Luisa F. Estrada, Michael A. Högele, Alexander Steinicke: On the tradeoff between almost sure error tolerance versus mean deviation frequency in martingale convergence,
https://arxiv.org/abs/2310.09055



Proof:



• {On0,N = 0} = Ac
n0

• nestedness: {On0,N = k} = An0+k−1 \An0+k for k = 1, . . . ,N

• {On0,N = N + 1} = An0+N

• For pk = P(Ak) we have



Summation by parts:

fk = pn0+k, gk = an0+k pk = P(Ak)





for

Sa,n0(N) :=

N−1∑
n=0

an+n0, Sa,n0(0) = 0.

Sending N → ∞ we have by monotone convergence



Lemma: Borel-Cantelli moment estimate for general events

• (Ω,A,P)
• (An)n⩾n0 general events (not nested)

• (an)n⩾n0 positive & nondecreasing

Then we have

E[Sa,n0(On0)] ⩽ E[Sa,n0(Mn0)] ⩽
∞∑

n=n0

an ·
∞∑

m=n

P(Am),

for

On0 :=

∞∑
n=n0

1(An)

Mn0 := max{n ⩾ n0 | ω ∈ An} =

∞∑
n=n0

1(
∞⋃

m=n

Am)



and

Sa,n0(N) :=

N−1∑
n=0

an+n0, Sa,n0(0) = 0



Proof:

• Fix

An ⊂ Ãn :=

∞⋃
m=n

Am.

Note that (Ãn)n⩾n0 is nested. Then by construction

On0 =

∞∑
n=n0

1(An) ⩽
∞∑

n=n0

1(Ãn) = Mn0.

• The nestedness of (Ãn)n⩾n0 allows to apply our Lemma for nested
events:

E[Sa,n0(On0)] ⩽ E[Sa,n0(Mn0)]=

∞∑
n=n0

anP(Ãn) ⩽
∞∑

n=n0

an

∞∑
m=n

P(An)



Lemma: Moment version of the first Borel-Cantelli lemma

• (Ω,A,P), n0 ∈ N
• (An)n⩾n0 family of events

• (an)n⩾n0 positive & nondecreasing

Then we have

E
[
Sa,n0(On0)

]
⩽ E

[
Sa,n0(Mn0)

]
⩽

∞∑
n=n0

an

∞∑
m=n

P(Am).

If the sequence (An)n⩾n0 is nested, we have

E
[
Sa,n0(On0)

]
= E

[
Sa,n0(Mn0)

]
=

∞∑
n=n0

anP(An).



Example 1: Polynomical probability decay P(Am) ⩽ cm−q

Then for 0 < p < q− 2:

E[O1+p
n0 ] ⩽ E[M1+p

n0 ] ⩽ cqζ(q− p− 1;n0), ζ(z;n0) =
∞∑

n=n0

1

nz

P(On0 ⩾ k) ⩽ P(Mn0 ⩾ k) ⩽ cq · k−(p+1) · ζ(q− p− 1;n0) k ⩾ 1.

This answers our pink question: For instance, given q = 5, for which
p > 0 do we get

E[O1+p] < ∞ ?



How to calculate this:



Example 2: Exponential probability decay P(Am) ⩽ cbm

Then for all b ∈ (0,1), c > 0, p ∈ (0,1):

E[b−pOn0] ⩽ E[b−pMn0] ⩽ 1 +
cbn0−1

1− b1−p

and for k⩾1

P(On0 ⩾ k) ⩽ P(Mn0 ⩾ k) ⩽ 29/8[k(cbn0−1 + 1) + 1] · bk.



Example 3: Weibull decay P(Am) ⩽ cbm
α

b, α,∈ (0,1), c > 0

Then for any p ∈ (0,1) ∃K = K(p, c,b, α) > 0 :

E[b−p(On0+n0−1)] ⩽ E[b−p(Mn0+n0−1)] ⩽ K

and

P(On0 ⩾ k) ⩽ P(On0 ⩾ k) ⩽ bp(k−1)αK



Recall:

• (Ω,A,P)
• (Xn)n∈N, Xn : Ω → R
• X : Ω → R

1)
Xn

n→∞−→ X in probability
if

lim
n→∞

P(|Xn −X| > ε) = 0 ∀ ε > 0

2)

Xn
n→∞−→ X P− a.s.

if ∃ Ω̃ ∈ A con P(Ω̃) = 1 s.th.

∀ω ∈ Ω̃ : lim
n→∞

Xn(ω) = X(ω).



Tradeoff Lemma of a.s. convergence3:

• (X ,B(X ),d) Polish space

• (Ω,A,P) with Xn,X : Ω → X r.v., n ⩾ n0

• p(δ,n) := P(d(Xn,X) > δ) → 0, as n → ∞ ∀ δ > 0 (conv. in P)

Then for any ϵ := (εn)n⩾n0 (> 0,↘) and a = (an)n⩾n0 (> 0,↗) s.th.

K(a, ϵ,n0) :=
∞∑

n=n0

an

∞∑
m=n

p(εm,m) < ∞

1) we have the a.s. asymptotic rate

d(Xn,X) ⩽ εn a.s. for all n ⩾ Mε,n0

2) we have the integrability of the overshoot / modulus of convergence

E[Sa,n0(Oϵ,n0)] ⩽ E[Sa,n0(Mϵ,n0)] ⩽ K(a, ϵ,n0)

3Luisa F. Estrada, Michael A. Högele, Alexander Steinicke: On the tradeoff between almost sure error tolerance versus mean deviation frequency in martingale convergence,
https://arxiv.org/abs/2310.09055



and in particular

P(Mϵ,n0 ⩾ ℓ) ⩽
K(a, ϵ,n0)

Sa,n0(ℓ)
where

Oε,n0 =

∞∑
n=n0

1{d(Xn,X) > εn},

Mε,n0 = max{n ⩾ n0 | d(Xn,X) > εn}
and

Sa,n0(N) =

N−1∑
n=0

an+n0 with Sa,n0(0) = 0





Example 4: Law of large numbers (Baum, Katz, 1965)

(Xi)i∈N centered i.i.d. Then are equivalent:

1. E[|X1|p] < ∞ for p > 1

2. For any p
2 < α ⩽ p and any c > 0 we have

∞∑
n=1

nα−2 · P
(
|X̄n| >

c

n
1−α

p

)
< ∞



For any p
2 < α ⩽ p and any c > 0 we have

∞∑
n=1

nα−2 · P
(
|X̄n| >

c

n
1−α

p

)
< ∞

Kronecker’s lemma: (cn)n∈N, (bn)n∈N, both > 0, bn → ∞

⇒ P
(
|X̄n| >

c

n
1−α

p

)
·

n∑
i=1

iα−2 → 0 and P
(
|X̄n| >

c

n
1−α

p

)
= o(nα−1)



Combining Lemma 2 + Example 1 + P
(
|X̄n| > c

n
1−α

p

)
= o(nα−1):

We have the tradeoff for moments p > 3!

For p, α > 3 with p
2 < α ⩽ p and 0 < p̃ ⩽ α− 3

E[O1+p̃] ⩽ E[M1+p̃] ⩽ C(α− 1)ζ(α− 2− p̃,n0) < ∞,

and

lim sup
n→∞

|X̄n| · n1−
α
p ⩽ 1 a.s.



Example 5: Cramér’s theorem

For (Xi)i∈N centered i.i.d. with E[eλ|X1|] < ∞ for some λ > 0

Then for any vecinity Ā ∋ 0

P(X̄n ∈ Ac) ⩽ 2 exp
(
− n inf

x∈Ac
I(x)

)
, n ⩾ 1

where I(x) is the Fenchel-Legendre transform of X1
(I(x) ⩾ 0, convex, I(0) = 0)

Large deviations principle (LDP)



In particular, for ϵ = (εn)n∈N (> 0,↘) and n ⩾ 1 we have that

P(X̄n ∈ Bc
εn(0) ⩽ 2 exp

(
− n inf

|x|>εn
I(x)

)
≈ exp

(
− n

ε2n
2
(D2I(0))

)

Combining Lemma 2 + Example 3 + P(X̄n ∈ Bc
ε(0))) = O(enε

2
n
(D2I(0))

2 )):

We have the tradeoff for εn = n−ρ, ρ ∈ [0, 12)!

E[ep̃O
1−2ρ
ϵ ] ⩽ E[ep̃M

1−2ρ
ϵ ] ⩽ K(ρ, p̃, ϵ,D2I(0)) < ∞

y

lim sup
n→∞

|X̄n| · ε−1
n ⩽ 1 a.s.



Obvious applications in any context with an LDP:

• The Glivenko-Cantelli theorem

• The Sanov theorem (i.i.d. + MC)

• Excursion frequencies of rare sequences for random walks

Applications with sums of independent increments:

• Quantifying the a.s. version of the CLT, Gaal-Koksma strong law

• A.s. rates of convergence of statistical M-estimators for bounded r.v.



III. Returning to the initial equation:

The rate of convergence of the Polya urn



Recall:

• Urn with N balls

• B of them are black, and N−B of them are white.

• Step 0: Initial value

X0 :=
B

N

• Step n: Given Xn−1 sample Xn ∼ BXn−1

Xn :=
B +

∑n
i=1Yi

N + n

1. It is a martingale ✓

2. It has increments, which are bounded by 1
n



Theorem: Azuma-Hoeffding inequality

• Martingale X = (Xn)n∈N
• The increments of X are a.s. bounded by (cn)n∈N that is

|Xn −Xn−1| ⩽ cn a.s. for all n ∈ N.

Then for m ⩽ n

P(Xn −Xm ⩾ ε) ⩽ exp
(
− 1

2

ε2∑n
i=m+1 c

2
i

)
.



Theorem: a.s. rates via Azuma-Hoeffding closure

• Martingale X = (Xn)n∈N
• The increments of X are a.s. bounded by (cn)n∈N that is

|Xn −Xn−1| ⩽ cn a.s. for all n ∈ N.• ∞∑
n=1

c2n < ∞ and set r(n) :=
∞∑

k=n+1

c2k

Then there exists a r.v. X∞ such that Xn → ∞ a.s. as n → ∞. If

• ϵ = (εn)n∈N positive & nonincreasing εn → 0

• a = (an)n∈N positive & nondecreasing

such that
K(a, ϵ) := 2

∞∑
n=1

an

∞∑
m=n

exp
(
− 1

2

ε2m
r(m)

)
< ∞,

then
lim sup
n→∞

|Xn −X∞| · εn−1 ⩽ 1 a.s. &

E[Sa,1(Oε)] ⩽ E[Sa,1(Mε)] ⩽ K(a, ε).



The rate of convergence of the Polya urn:

For any p ∈ (0,1) and

ϵ = (εn)n∈N εn :=

√
2

3np
, n ⩾ 1

by the Corollary we have

1. We have a.s.

lim sup
n→∞

|Xn −X∞| · n
p
2 ⩽

√
3

2

2. For any q ∈ (0,1) we have

E[eqO
1−2p
ε,1 ] ⩽ E[eqM

1−2p
ε,1 ] ⩽ K((eqn

1−2p
)n, ε,1)



Note:

• We only used the Azuma-Hoeffding inequality for martingales with
a.s. square summably bounded increments.

• More inmediate examples:

– Generalized Polya urns with more colors and more general re-
placement rules

– Excursion frequencies for different heights for the martingales
associated to the supercritical branching process



IV. Another type of applications: Brownian path properties
approximations

• More than 1 century of hiding the approximations of Brownian sample
paths in order to extract precise path properties
−→ rough path theory

• Idea: reverse engineering of this path abstraction, terms of a.s. con-
vergence with higher order MDF.

• Use the approximations of Brownian path properties in the literature
and quantify those.



• Clearly, for any finite time step discretization (Wtn)n this is false.

• However we can quantify, how fast, this property emerges a.s.



Theorem: (Paley, Wiener, Zygmund, quantitative)



Sketch of proof (Koshnevisa, Karatzas / Shreve )





More Brownian path property approximations:

1. A.s. uniform convergence of Lévy’s construction

2. Kolmogorov-Chentsov continuity theorem

3. Lévy’s modulus of continuity

4. Loss of path monotonicity

5. Laws of the iterated logarithm (Khinchin, Chung’s “other” law, Strassen)



V. Extention of qBC1 to independent events



Motivation: Kolmogorov’s 3 series theorem

• (Ω,A,P),
• (An)n∈N independent events, O :=

∑∞
n=1 1(An)

Hence

O < ∞ P− c.s. ⇔ Var(O) < ∞ ⇔ C1 =

∞∑
n=1

P(An) < ∞.

since

E[O2]= E[(
∞∑
n=1

1An)
2] = E[

∞∑
n=1

1An +
∑
n̸=m

1An1Am]

=

∞∑
n=1

E[1An] +
∑
n̸=m

E[1An1Am]

⩽
∞∑
n=1

P(An) +

∞∑
n,m=1

P(An)P(Am) = C1(1 +C1)



Preliminary result: Freedman’s universal bound

• (Ω,A,P),
• (An)n∈N independent events

• C1 :=
∑∞

n=1 P(En) < ∞

Then for all r > 0

E[erO] ⩽ eC1(e
r−1)



Proof (sketch):



The second Borel-Cantelli lemma:

• (Ω,A,P),
• (An)n∈N independent events

• C1 :=
∑∞

n=1 P(An) < ∞



The second Borel-Cantelli lemma:

• (Ω,A,P),
• (An)n∈N independent events

• C1 :=
∑∞

n=1 P(An) < ∞

How can this result be quantified, where the rate of convergence of
(P(An))n∈N appears, instead of only the value C1?



First formulation: C1

• (Ω,A,P)
• (An)n∈N independent events

• C1 :=
∑∞

n=1 P(An) < ∞

• C1 < e−r for some r > 0

Then



Proof (sketch): The distribution of ON is known

Passing to the limit N → ∞ we conclude.



Second formulation:

• (Ω,A,P)
• (An)n∈N independent events

• Cm :=
∑∞

n=m P(An) < ∞,m ∈ N
• Nδ(r) := inf{m ∈ N | Cm < e−r/δ} for r > 0 and δ > 1

Then for all r > 0 we have

E[erO] ⩽
erm

1−Cmer
for all m ⩾ Nδ(r), δ > 1



Second formulation:

• (Ω,A,P)
• (An)n∈N independent events

• Cm :=
∑∞

n=m P(An) < ∞
• Nδ(r) := inf{m ∈ N | Cm < e−r/δ} for r > 0 and δ > 1

Then for all r > 0 we have

E[erO] ⩽
erm

1−Cmer
for all m ⩾ Nδ(r), δ > 1

which we can optimize



Third formulation:

• (Ω,A,P),
• (An)n∈N independent events

• Sea
∑∞

n=1 P(An) < ∞
• Cm :=

∑∞
n=m P(An)

• For L : (0,∞) → (0,∞) non increasing, invertible such that

L(m) = Cm

Then for all r > 0 we get



The quantitative second Borel-Cantelli lemma:

• (Ω,A,P),
• (An)n∈N independent events

• Cm :=
∑∞

n=m P(An) < ∞, m ∈ N
• L : (0,∞) → (0,∞) non-increasing, invertible with L(m) = Cm

Then



Example: (An)n∈N independent P(En) ⩽ c/np, p > 1.

By Markov’s inequality



Example: (An)n∈N independent and P(An) ⩽ cbn, b ∈ (0,1)

Hence



Example: (An)n∈N independent and P(An) ⩽ bn
2
, b ∈ (0,1)

E[erO] ⩽ 2 exp(

√
r3 − r2 ln(2)√

| ln(b)|
).

and

P(O ⩾ k) ⩽ 2 exp
(
−
((2| ln(b)|

3

)2 · k3
3

+
√
2
)
/
√
| ln(b)|

)
k ⩾ 1.



More applications:

• Random graphs (Coloring numbers, clique numbers)

• A.s. invariance principles (A.s. versions of the CLT)
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