Innovative Technologies and Sustainable Use of Mediterranean Sea Fishery and Biological Resources (FishMed-PhD 37 2022-03-01)

Crystallization in Environment and Environmental Protection

D. Kralj Ruđer Bošković Institute, Zagreb, Croatia

1. Kinetics and Mechanisms of Crystallization Processes

Crystallization or Precipitation??

Precipitation = Physical-chemical process of formation of new phase in homogeneous system

Liquid in gas (rain droplets in air - clouds)

Gas in liquid (CO₂ bubbles)

Solid in gas (smoke)

Solid in liquid (crystals in suspension) (Precipitation in limited sense!!)

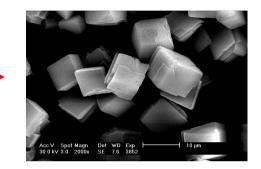
Crystallization - examples

- CuSO₄·5H₂O Copper sulfate pentahydrate (Blue vitriol)
- Evaporation of saturated solution
- solubility = 10.4 g/L
- large crystals

- NaCl Sodium Chloride (Common salt)
- Evaporation of saturated solution
- solubility = 360 g/L
- large crystals

Precipitation - examples

- AgCI Silver chloride (chloride determination in water)
- Mixing of diluted AgNO₃ and NaCl solutions
 (Analytical chemistry: Ag⁺(aq) + Cl⁻(ag) ↔ AgCl(s))
- Solubility = 5.2 mg/L (50 °C)
- micron-sized particles
- Silver chromate Ag₂CrO₄ (Mohr's method, indicator)
- Mixing of diluted AgNO₃ and K₂CrO4 solutions
 - (Analytical chemistry: $2Ag^{+}(aq) + CrO_{4}^{-}(aq) Ag_{2}CrO_{4}(s)$)
- Solubility = 50.0 mg/L (45 °C)
- Micron-sized particles



Crystallization and Precipitation - Examples

_ calcite CaCO₃ solubility = 13 mg / L

https://www.howitworksdaily.com/the-giant-crystal-cave/

__ gypsum CaSO₄·2H₂O solubility = 2600 mg/L

Illustrations from: https://www.howitworksdaily.com/the-giant-crystal-cave/ https://thecrystalcouncil.com/crystals/iceland-spar

Precipitation or crystallization!!

Crystallization \rightarrow large crystals Crystallization \rightarrow slow process Precipitation \rightarrow small crystals Precipitation \rightarrow fast process Large crystals \rightarrow more soluble salts Small crystals \rightarrow less soluble salts

Precipitate \rightarrow very often crystals!

Some definitions...

Precipitation = crystallization of slightly soluble salts Precipitation = fast crystallization (high saturation!)

> Crystallization \leftrightarrow soluble salts Precipitation \leftrightarrow slightly soluble salts

PRECIPITATION → MORE GENERAL TERM

Solubility

Solubility (definition) = the maximum amount of substance that will dissolve in a given amount of solvent at certain temperature (concentration of substance in saturated solution, c_s)

Empirical classification of solubility of solids in water:

Insoluble	c_s < 0.01 mol/L
Slightly soluble	0.01 < c _s < 0.1 mol/L
Soluble	c_s > 0.1 mol/L

Empirical solubility rules (...)

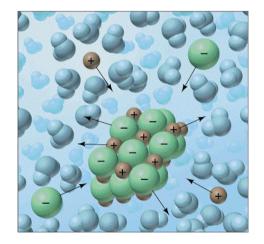
- 1. All sodium, potassium, and ammonium salts are soluble.
- 2. All nitrates, acetates and perchlorates are soluble.
- 3. All silver, lead and mercury(I) salts are insoluble.
- 4. All chlorides, bromides and iodides are soluble (!!!).
- 5. All carbonates, sulfides, oxides and hydroxides are insoluble (!!!).
- 6. All sulfates are soluble, except calcium sulfate and barium sulfate.

Equilibrium in systems of ionic salts (compound)

In saturated solution containing solid \rightarrow dynamic equilibrium

$M_xA_Y \leftrightarrow xM^{m+} + yA^{a-}$

Dissolution rate of solid phase in excess = crystallization (precipitation) rate, $k_d = k_a$

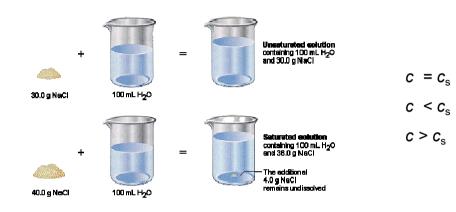

Solubility product (K_{sp})

Equilibrium reactions

 $\begin{aligned} &\mathsf{CaCO}_3(s) \leftrightarrow \mathsf{Ca}^{2+}(aq) + \mathsf{CO}_3^{2-}(aq) \\ &\mathsf{AgCl}(s) \leftrightarrow \mathsf{Ag^+}(aq) + \mathsf{Cl^-}(aq) \\ &\mathsf{Al}(\mathsf{OH})_3(s) \leftrightarrow \mathsf{Al^{3+}}(aq) + 3\mathsf{OH^-}(aq) \\ &\mathsf{Hg}_2\mathsf{l}_2(s) \leftrightarrow 2\mathsf{Hg^+}(aq) + 2\mathsf{l^-}(aq) \\ &\mathsf{CaF}_2(s) \leftrightarrow \mathsf{Ca}^{2+}(aq) + 2\mathsf{F^-}(aq) \end{aligned}$

Solubility product

 $K_{sp} = [Ca^{2+}] \cdot [CO_3^{2-}]$ $K_{sp} = [Ag^+] \cdot [CI^-]$ $K_{sp} = [AI^{3+}] \cdot [OH^-]^3$ $K_{sp} = [Hg^+]^2 \cdot [I^-]^2$ $K_{sp} = [Ca^{2+}] \cdot [F^-]^2$


Solubility product, $K_{sp} \rightarrow$ Estimate of solubility (c_s)

Calcium carbonate (CaCO₃) $K_{sp} = [Ca^{2+}] \cdot [CO_3^{2-}]$ $c_s = [Ca^{2+}]_{eq} = [CO_3^{2-}]_{eq} = \sqrt[2]{[Ca^{2+}] \cdot [CO_3^{2-}]} = \sqrt[2]{K_{sp}}$

Calcium fluoride (CaF₂) $K_{sp} = [Ca^{2+}] \cdot [F^{-}]^{2}$ $C_{s} = [Ca^{2+}]_{eq} = \frac{1}{2}[F^{-}]_{eq} = \sqrt[3]{[Ca^{2+}] \cdot [F^{-}]^{2}} = \sqrt[3]{K_{sp}}$

No. of lons	Formula	Cation:Anion	K _{sp}	Solubility (M)
2	MgCO ₃	1:1	3.5×10^{-8}	1.9×10^{-4}
2	PbSO ₄	1:1	1.6×10^{-8}	1.3×10^{-4}
2	BaCrO ₄	1:1	2.1×10^{-10}	1.4×10^{-5}
3	Ca(OH) ₂	1:2	6.5×10^{-6}	1.2×10^{-2}
3	BaF_2	1:2	1.5×10^{-6}	7.2×10^{-3}
3	CaF_2	1:2	3.2×10^{-11}	2.0×10^{-4}
3	Ag2CrO4	2:1	2.6×10^{-12}	8.7×10^{-5}

Measure of solution stability

saturated solution (no dissolution, no precipitation \rightarrow equilibrium)
undersaturated solution (dissolution of solid phase)
supersaturated solution (precipitation of solid phase)

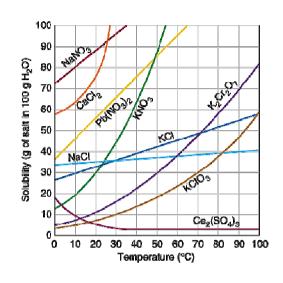
Supersaturation definition

ϕ = RT ln (c /c _s)
$S = \frac{C}{C_s}$
C - C _s
$\frac{c-c_{\rm s}}{c_{\rm s}} \equiv S-1$
$SI \equiv \log(\frac{c}{c_s})$

Factors which determine the solubility of ionic salts

Temperature change \rightarrow Increase of solubility (!)

Complexation of constituent ions \rightarrow Increase of solubility


 $CaCO_3(s) \leftrightarrow Ca^{2+}(aq) + CO_3^{2-}(aq) + (EDTA \rightarrow CaEDTA)$

Strong acid addition \rightarrow Increase of solubility (salts of weak acids – carbonates, fluorides, phosphates...)

 $CaCO_3(s) \leftrightarrow Ca^{2+}(aq) + CO_3^{2-}(aq) + (H_3O^+ \rightarrow HCO_3^{-})$

Common ion addition \rightarrow Decrease of solubility


 $CaCO_3(s) \leftrightarrow Ca^{2+}(aq) + CO_3^{2-}(aq) + (CaCl_2(aq))$

How to initiate precipitation / crystallization??

1. Temperature change

2. Evaporation of solvent – change of constituent ion concentration

3. Chemical reaction / mixing the components

Chemical reaction (mixing the reactants) \rightarrow suitable for slightly soluble salts

Soluble salt AX + Soluble salt BY \rightarrow Insoluble salt AB + Soluble X + Soluble Y

 $2 \text{ AgNO}_3 + \text{K}_2 \text{CrO}_4 \leftrightarrows \text{Ag}_2 \text{CrO}_4(s) + 2 \text{ KNO}_3$

 $2Ag^{+} + 2NO_{3}^{-} + 2K^{+} + CrO_{4}^{2-} \hookrightarrow Ag_{2}CrO_{4}(s) + 2K^{+} + 2NO_{3}^{-}$

$$CaCl_2 + Na_2CO_3 \subseteq CaCO_3(s) + 2NaCl_3(s)$$

 $Ca^{2+} + 2Cl^{-} + 2Na^{+} + CO_3^{2-} \subseteq CaCO_3(s) + 2Na^{+} + 2Cl^{-}$

Importance of investigation of crystallization (precipitation)???

Geology, geochemistry, ocenology

- Formation of sedimentary rocks and minerals
- Sea water buffering: absorption of $CO_2 \rightarrow CaCO_3$ precipitation \rightarrow global warming, acidification...

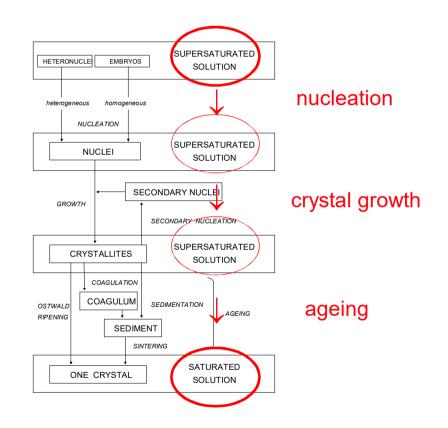
Technology (industrial crystallization)

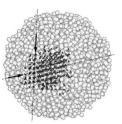
- First technological process in history alum production (tanning)
- 60 70 % product of basic chemical and pharmaceutical industry by precipitation
- Unwanted precipitation incrustation, limescale...

Biomedicine, biology

• Biomineralization, pathological mineralization (bones, teeth, shells, ...) → materials science

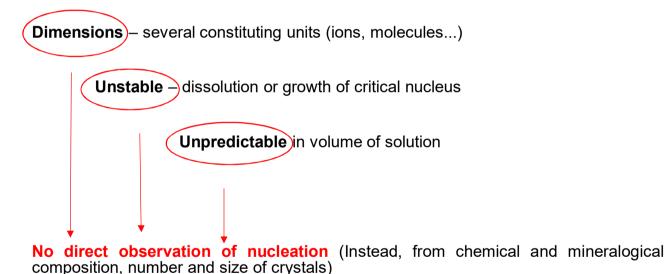
Environmental protection....

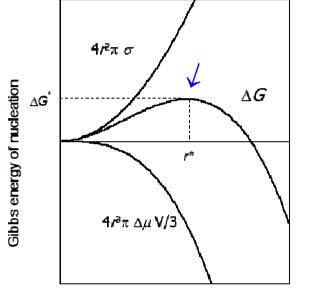


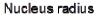

Mechanisms of precipitation (crystallization) processes

(Physical-chemical process of formation of new phase in homogeneous system)

Precipitation → **Stepwise process** = **Nucleation** + **Crystal Growth** + **Ageing**




Nucleation



Initial formation of new phase in homogeneous solution - energetically most demanding

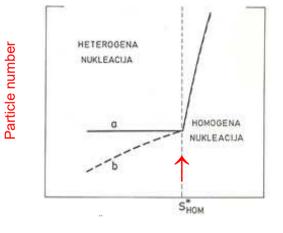
Classical nucleation theory: Nucleus (r*) is a tiny peace of solid phase with all physical chemical properties of macroscopic structure, which stabilize by dissolution or growth

Macroscopic parameters (V, A, σ , μ) $\Delta G = \Delta G_{\text{Vol}} + \Delta G_{\text{Sur}}$ $\Delta G = V \Delta \mu_{\text{v}} + A \sigma$ $\Delta G = (4r^3 \pi/3) \Delta \mu_{\text{v}} + 4r^2 \pi \sigma$

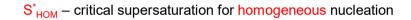
Number of nuclei (crystals) vs. initial supersaturation

(a) Homogeneous nucleation - by interaction (collision) of constituents $n \approx 10^7 - 10^{12} \text{ cm}^{-3}$

(b) Heterogeneous nucleation - catalyzed by suspended impurities, seeding

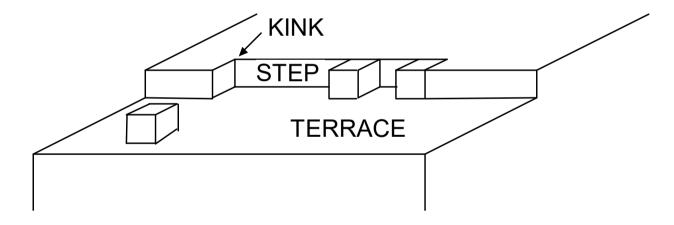

 $n \approx 10^6 - 10^7 \,\mathrm{cm}^{-3}$

(Water undercooling: - 48.3 °C)

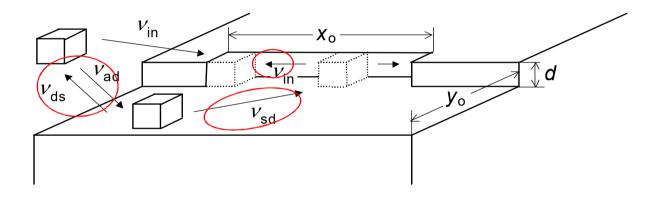


Nucleation rate

 $J = B \cdot \exp(-C / \ln^2 S)$


Initial supersaturation

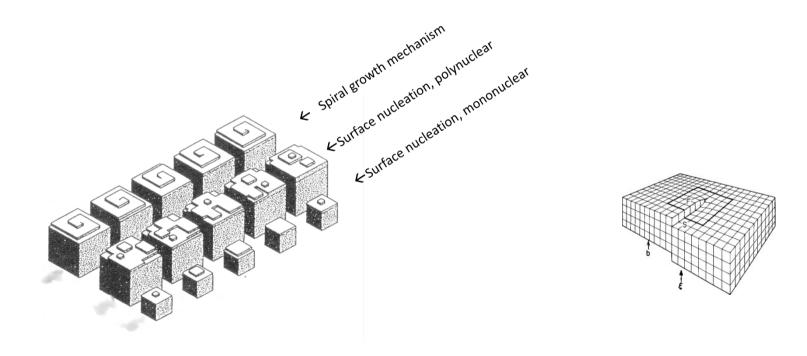
Crystal growth


Continuous incorporation of constituent units into crystals which is in contact with supersaturated solution

Incorporation into energetically favored position at surfaces (kinks, steps)

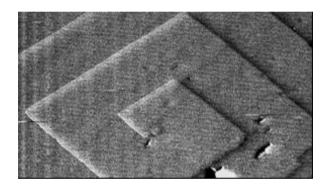
Crystal growth = consecutive processes \rightarrow slowest process control the overall growth

Volume diffusion and convection of growth units Adsorption Surface diffusion Edge diffusion

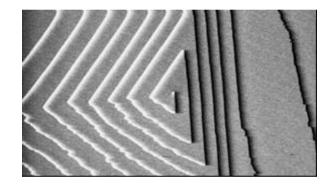

1. Transport controlled mechanisms

Diffusion controlled growth	$rate = D \cdot V_{\rm m} \cdot (c - c_{\rm s})/r$	$\approx K_{\rm d} \cdot (c - c_{\rm s})/r$	"Linear growth rate low"
Adsorption controlled growth	<i>rate</i> = $(V_m/A)Ad(c_{V_{ad}} - AdK_{ad}c_s_{V_{ds}}) = V_m d_{V_{ad}}c_s(S-1)$	≈ k ₁ (S-1)	"Linear growth rate low"

2. Surface controlled mechanisms (incorporation of constituents into crystal structure)

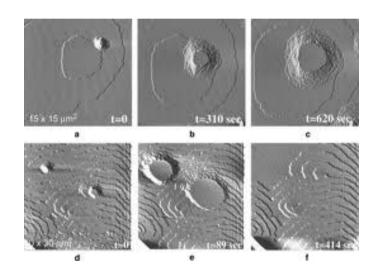

Surface nucleation controlled growth	<i>rate</i> = A·exp(-B/InS)	"Ex
Spiral (dislocation) controlled growth	$rate = k_2 \cdot (S-1) \cdot \ln S \approx k_2 \cdot (S-1)^2$	"Pa

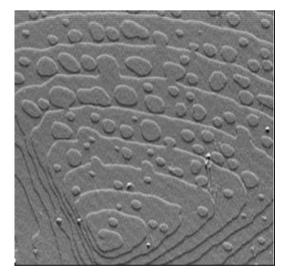
"Exponential growth rate low" "Parabolic growth rate low"



Visualization of crystal surfaces during growth in solution Atomic force microscopy (AFM)

Growth on spiral step


Calcite (CaCO₃)



Brushite (CaHPO₄ ·2H₂O)

Surface nucleation)

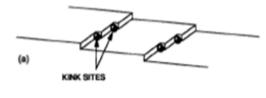
Growth on spiral step + surface nucleation

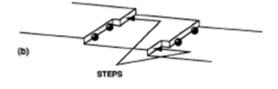
Impurities and crystal growth

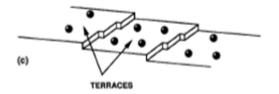
Impurity - any foreign substance other than precipitating (crystallizing) compound

Additive - deliberately added impurity

Impurities in contact with crystallizing compound adsorb on surfaces at the terraces (immobile additives) at position on growing steps (mobile additives)


Decrease the growth rate – adsorbed at active sites on the surface or in the kink, impede the step propagation




Occasionally: increase the growth rate – incorporation into structure - changing the crystal properties (interfacial energy)

Change the crystal morphology !!!!

Change the growth mechanism!!!!

Why to investigate crystal growth kinetics and mechanisms??

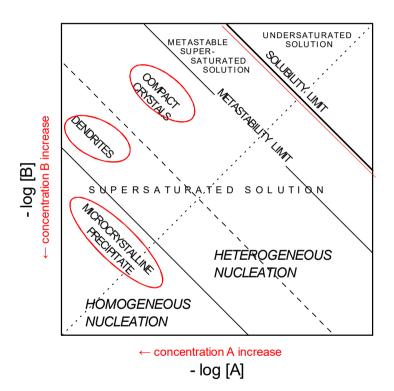
Precipitation mechanisms ??

Described by kinetic laws - correlate the growth rate and respective supersaturation

Growth rate = Constant × Function of supersaturation

rate = -dc /dt = $k_r \times (c - c_s)^n$

(analysis of kinetic data: testing and comparison of theoretical growth models (mechanisms) with experimental data)


\downarrow

3. Control of physical / chemical properties of precipitate

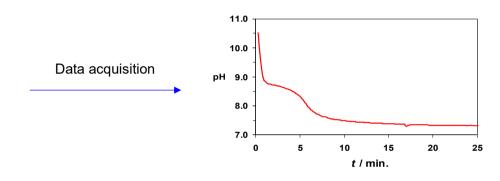
Research Strategy

A. Precipitation diagrams

- Graphical presentation of precipitation system (screening)
- Experimentally obtained properties shown as a function of concentration of reactants, sampled at identical experimental conditions (time, pH, temperature, mode of mixing, additives...) mineralogical (chemical) composition of precipitate morphology size distribution
- Isergones lines of constant relative supersaturation (S-1)
- Solubility boundary, (S-1) = 0
- Precipitation boundary (metastability limit), (S-1) > 0
- Homogeneous nucleation (precipitation) (S-1) >> 0

Critical precipitation parameters Vs. Critical properties of solid phase

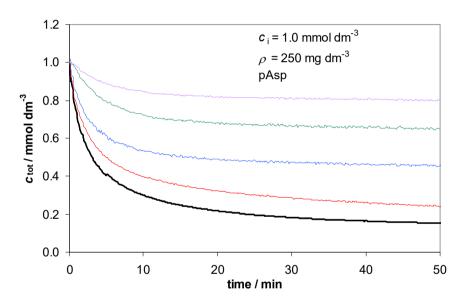
Supersaturation (initial concentration of reactants)	
Temperature	
Constituent ions ratio	
Presence of additives / impurities	
Hydrodynamics	


Size c	distrib	ution
--------	---------	-------

vs. Morphology

Polymorphism / chemical composition

B. Precipitation kinetics and mechanism

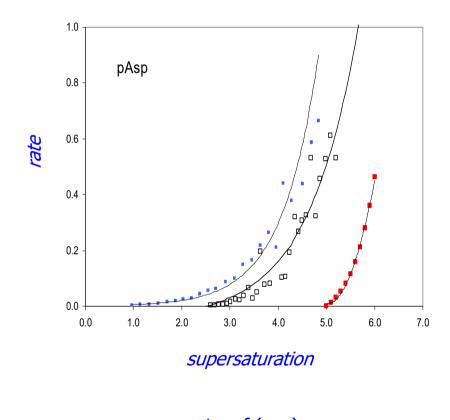


Experimental set-up – measurements of reaction propagation

Beaker + Temperature control + Stirring

Sensor - progress of reaction (ion selective electrode, pH, conductivity, size distribution, chemical analysis...)

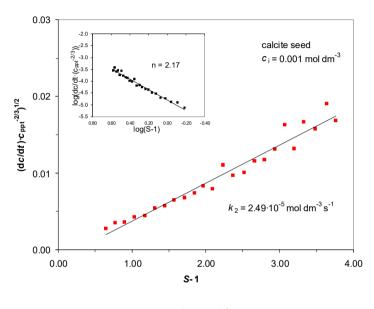
Analysis of growth kinetics

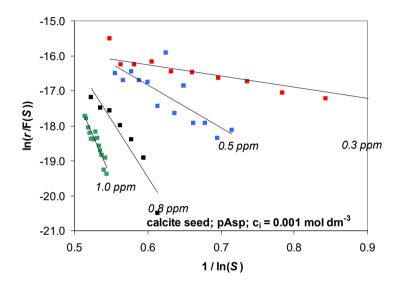


1. Progress curves

c = f(t)

 \downarrow


2. Calculation of growth rate and supersaturation

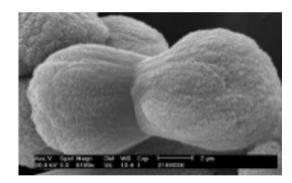


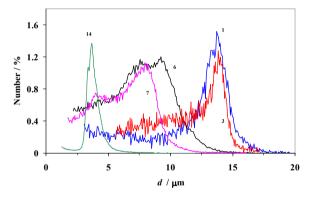
$$rate = f(c - c_s)$$

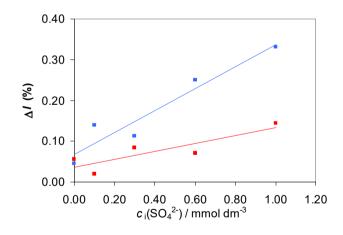
3. Testing the theoretical crystal growth laws (models)

 \downarrow

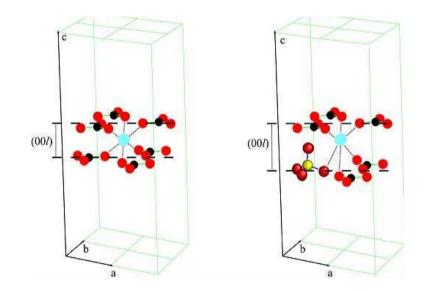
 $v = k_2 (S - 1)^2$


 $\ln(v) = k_{\rm e} \cdot (1/\ln S)$


Parabolic growth rate \rightarrow Growth on dislocation


Exponential growth rate \rightarrow Nucleation control

4. Analytical characterization of solution and solid phase


Morphology (SEM / EDX) Crystal size distribution (DLS, CC) Chemical analysis (chromatography, spectroscopy...) Structural analyses (FTIR, PXRD, EPR, ss-NMR...)

5. Results - models

Innovative Technologies and Sustainable Use of Mediterranean Sea Fishery and Biological Resources (FishMed-PhD 37 2022-03-01)

Crystallization in Environment and Environmental Protection

D. Kralj Ruđer Bošković Institute, Zagreb, Croatia

2. Calcium Carbonate Precipitation

Calcium carbonate: "ordinary" material

Geological CaCO₃

Karst / limestone

Tufa

Travertine

Chalk

Stalactite, stalagmite

Biominerals

Limescale

Properties

Molecular formula Exact mass Appearance Density **Melting point Boiling point** Solubility in water Solubility product, K_{sp} Solubility in dilute acids Acidity (pK_a) 9.0 Refractive index (*n*_D) 1.59 Structure Crystal structure 2/m Space group

CaCO₃ 100.0869 g/mol Fine white powder 2.71 g/cm³ (calcite) ????? 2.83 g/cm³ (aragonite) 825 °C (aragonite) 1339 °C (calcite) decomposes 0.00015 mol/L (25°C) 4.810⁻⁹ ????? soluble Trigonal

Calcite – Iceland spar

aragonite

marble

travertine, tufa

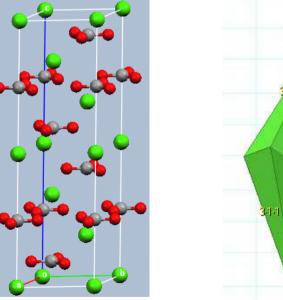
http://en.wikipedia.org/wiki/Calcium_carbonate)

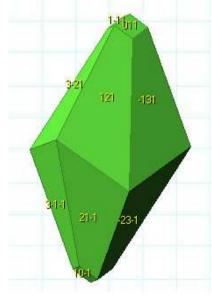
CALCIUM CARBONATE PHASES AT ENVIRONMENTAL CONDITIONS

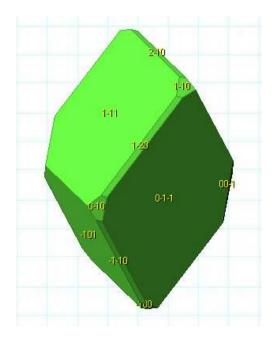
AMORPHOUS

 $\mbox{AMORPHOUS CALCIUM CARBONATE} \qquad \mbox{CaCO}_3 \cdot \mbox{nH}_2 \mbox{O}$

HYDRATES


CALCIUM CARBONATE HEKSAHYDRATE ()	$CaCO_3 \cdot 6H_2O$
CALCIUM CARBONATE MONOHYDRATE (IKAITE)	CaCO ₃ ⋅H ₂ O


POLYMORPHS


VATERIT	$CaCO_3$
ARAGONIT	$CaCO_3$
KALCIT	CaCO ₃

CALCITE

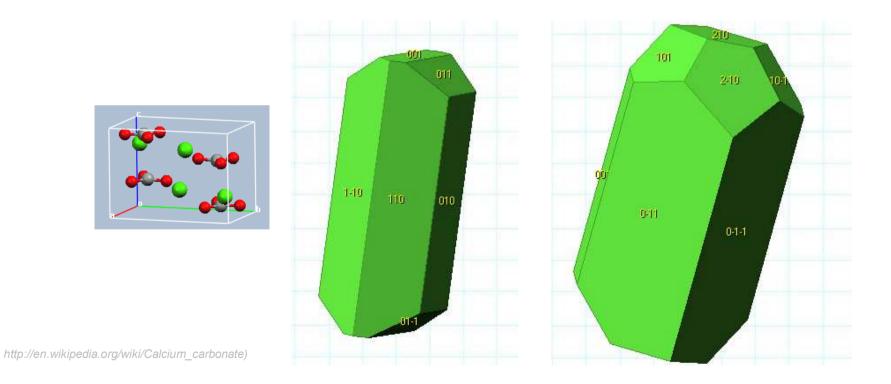
Most stable polymorph Wide spread mineral (\approx 4 % Earth crust) Formation at different periods of Earth history More than 800 crystal forms Trigonal crystal system, hexagonal lattice system, Ca coordinated with 6 CO₃²⁻ Unit cell: *a* = 4.9896(2) Å, *c* = 17.0610(11) Å;

http://en.wikipedia.org/wiki/Calcium_carbonate)

Typical crystal habit

scalenohedral

microcrystalline aggregate

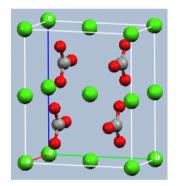


rhombohedral

ARAGONITE

Less stable modification (high pressure, high temperature modification) Formation in presence of Mg²⁺ Slow transformation of geological deposits to calcite (10 to 100 M years) Important biomineral – corals, mollusk shell (nacreous layer or entire) ... Orthorhombic crystal system, dipyramidal crystal class, Ca coordinated with 9 CO_3^{2-} Unit cell: a = 4.95 Å, b = 7.96 Å, c = 5.74 Å;

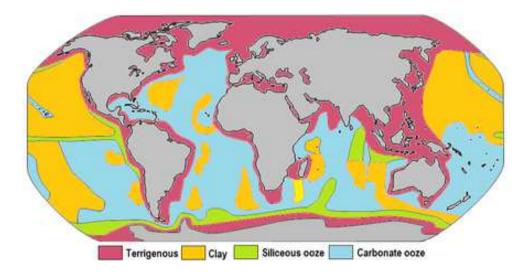
Typical crystal habit


Prismatic, acicular, columnar, globular

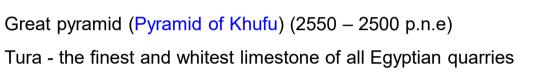
VATERITE

Least stable CaCO₃ polymorph Uncommon in nature (fast transformation in aqueous environment) Stabilized by organic macromolecules – biomineralization (fish otoliths), pathological mineralization (gallstone) Hexagonal crystal system; dihexagonal dipyramidal crystal class, Ca coordinated with 8 CO_3^{2-} Unit cell: a = 4.13 Å, c = 8.49 Å

VATERITE



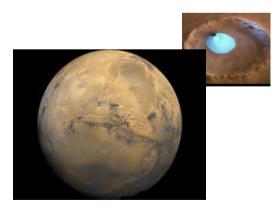
Calcium carbonate: "Extraordinary mineral"??

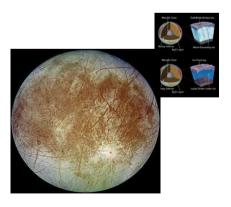

(Do you know that...)

 \dots CaCO₃ is one of the most abundant mineral \dots


4% Earth crust, 20% sedimentary rocks – chalk, limestone, tufa, travertine ... 25% seafloor sediment – containing more than 30% $CaCO_3$

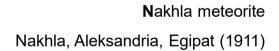
... the tallest man-made structure is made of calcium carbonate (limestone)


Khafre pyramid \rightarrow granite + limestone


... the calcium carbonate is found only on Earth...

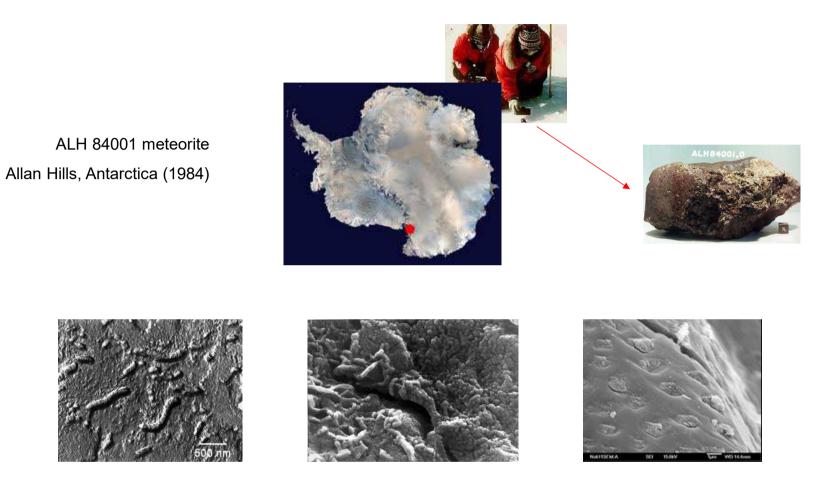
only in aqueous solution: $Ca^{2+}(aq) + CO_3^{2-}(aq) \leftrightarrow CaCO_3(s)$

What about Mars, Europa, ... ??


CaCO₃ and search for extraterrestrial life

SNC (Martian) meteorites (Shergottites, Nakhlites, Chassignites) Elemental and isotopic compositions similar to Mars' rocks and atmosphere

Shergotty meteorite Shergotty, Bihar, India (1865)



Chassigny meteorite Chassigny, Francuska (1815)

David S. McKay et al.: Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001 Science, 1996, Vol. 273 no. 5277 pp. 924-930 **Calcium carbonate in seawater and oceans**

Origin of seawater and oceans

Water:

Volcanoes – degassing from molten rocks (and/ or comets)

Minerals	Majority of minerals	
	Na ⁺	
	CI ⁻ , SO ₄ ²⁻ HCO ₃ ⁻ ,	
	Salinity	

Ca²⁺/ Mg²⁺

- rainfall washout of the ground (continental weathering) additionally leached out from ocean floor outgassing from Earth interior (volcanos, hydrothermal vents)
- stable during the Earth's history variable during the Earth's history

http://en.wikipedia.org/wiki/

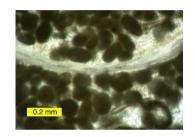
 \rightarrow

 \rightarrow

 \rightarrow

 \rightarrow

 \rightarrow


CaCO₃ precipitation - inorganic

Dominant during the early time of Earth history (Precambrian) (+ microorganisms - stromatolites)

Modern seawater - supersaturated with respect to CaCO₃

Ooids, peloids

CaCO₃ precipitation – biological

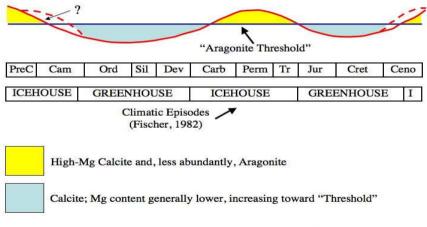
Dominant during the Phanerozoic (last 540 million years of the Earth's history)

Mineralogical composition

Low-magnesium calcite (brachiopods, planktonic foraminifera, coccoliths) High-magnesium calcite (benthic foraminifera, echinoderms, coralline algae)

Aragonite (mollusks, calcareous green algae, stromatoporoids, corals, tube worms)

CaCO₃ precipitation during the Earth's history


Calcite sea

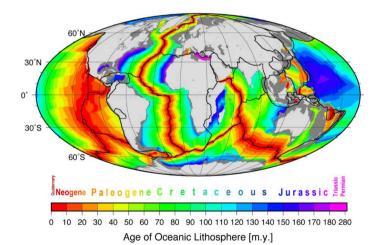
Low magnesium calcite dominant inorganic CaCO₃ precipitate

Formation of carbonate hardground, calcitic ooids, calcite cements, dissolution of aragonite shell

Aragonite sea

Aragonite and high-magnesium calcite dominant inorganic CaCO₃ precipitate

After Sandberg (1983)


Why calcite sea?

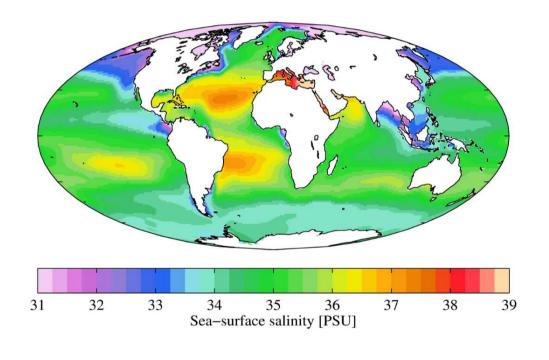
Rapid seafloor spreading at mid-ocean ridges

seawater cycling through hydrothermal vents reduction of Mg by metamorphosis (Ca-rich minerals \rightarrow Mg-rich basalt or clays (hydrothermal alteration)

Global greenhouse conditions

volcanism \rightarrow high CO₂ content favor calcite formation

Effects of Spreading Rates on Atmosphere and Seawater				
	Mg/Ca Ratio	CO ₂ Level		
High rate of spreading	LOW (favors calcite)	HIGH (favors calcite)		
Low rate of	HIGH	LOW		


(favors aragonite)

spreading

(favors aragonite)

Composition of modern (aragonitic!) seawater

Salinity = quantity of dissolved salts in water

pH = 7.5 - 8.4

Chemical composition (average)

(35 ‰ salinity)

Component	Concentration (mol/kg)	
CI⁻	0.546	
Na⁺	0.469	
Mg ²⁺	0.0528	
SO4 ²⁻	0.0282	
Ca ²⁺	0.0103	
K ⁺	0.0102	
HCO ₃ -	0.00206	
Br⁻	0.000844	
B(OH) ₃	0.000416	
Sr ²⁺	0.000091	
F⁻	0.000068	

Protocol for artificial seawater (ASW) preparation

(35 ‰ salinity)

Calcium chloride (CaCl₂.2H₂O)

Strontium chloride (SrCl₂.6H₂O)

0.01033

0.00009

		Component	Seawater (mol/kg)	ASW (mol/kg)
"Gravimetric" salts				
Salt	g kg ⁻¹ solution			
Sodium chloride (NaCl)	23.926	Cl⁻	0.546	0.54587
Sodium sulfate (Na ₂ SO ₄)	4.008	Na⁺	0.469	0.46825
Potassium chloride (KCl)	0.677	Mg ²⁺	0.0528	0.05327
Sodium bicarbonate (NaHCO ₃)	0.196	SO4 ²⁻	0.0282	0.02822
Potassium bromide (KBr)	0.098	Ca ²⁺	0.0103	0.01033
Boric acid (H_3BO_3)	0.026	K	0.0102	0.00990
Sodium fluoride (NaF)	0.003	HCO ₃ -	0.00206	0.00233
		Br⁻	0.000844	0.00082
"Volumetric" salts		B(OH) ₃	0.000416	0.00042
		Sr ²⁺	0.000091	0.00009
Salt	mol kg ⁻¹ solution	F⁻	0.000068	0.00007
Magnesium chloride (MgCl ₂ .6H ₂ C	0) 0.05327			

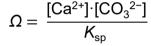
Seawater as precipitation system (major components)

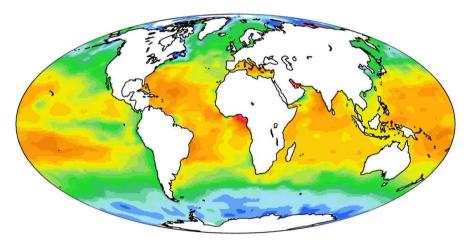
Relevant ionic species

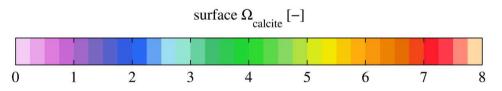
H⁺, OH⁻, Ca²⁺, CaCO₃⁰, CaHCO₃⁺, CaCl⁺ , CaSO₄⁰, H₂CO₃^{*}, HCO₃⁻, CO₃²⁻, Mg²⁺, MgCO₃⁰, MgHCO₃⁺, MgSO₄⁰, SO₄²⁻, Cl⁻, NO₃⁻, Na⁺, NaCO₃⁻, K⁺...

Mass balances

 $[Ca]_{tot} = [Ca^{2+}] + [CaCO_3^0] + [CaHCO_3^+] + [CaSO_4^0] + [CaCl^+]$ $[CO_3]_{tot} = [H_2CO_3^*] + [HCO_3^-] + [CO_3^{2-}] + [CaCO_3^0] + [CaHCO_3^+] + [MgCO_3^0] + [MgHCO_3^+] + [MaCO_3^-]$ $[Mg]_{tot} = [Mg^{2+}] + [MgCO_3^0] + [MgHCO_3^+] + [MgSO_4^0]$


lonic equilibria


$$\begin{split} & \mathsf{H}_2\mathsf{CO}_3^*(\mathsf{aq}) \leftrightarrow 2 \; \mathsf{H}_2\mathsf{O} + 2 \; \mathsf{CO}_2 \; (\mathsf{g}) \\ & 3 \; \mathsf{CaCO}_3(\mathsf{s}) + 3 \; \mathsf{H}^+ \leftrightarrow 3 \; \mathsf{Ca}^{2+} + \mathsf{HCO}_3^{-} + \mathsf{CO}_3^{2-} + \mathsf{H}_2\mathsf{CO}_3^{*} \\ & \mathsf{Ca}^{2+} + \mathsf{HCO}_3^{-} \leftrightarrow \mathsf{CaHCO}_3^{+} \\ & \mathsf{Ca}^{2+} + \mathsf{CO}_3^{2-} \leftrightarrow \mathsf{CaCO}_3^{-0} \end{split}$$


• • • •

Calcium carbonate equilibrium in seawater

$$Ca^{2+}(aq) + CO_3^{2-}(aq) \leftrightarrow CaCO_3(s)$$

Vertical distribution of $CaCO_3$ saturation (Ω)

Shallow water - supersaturated with respect to CaCO₃ polymorphs (calcite, aragonite, vaterite)

- CaCO₃ shells of dead marine organisms preserved in the water column
- No significant spontaneous precipitation of $CaCO_3$ (!!!!)

High Mg²⁺ concentration - inhibition of calcite nucleation (precipitation)

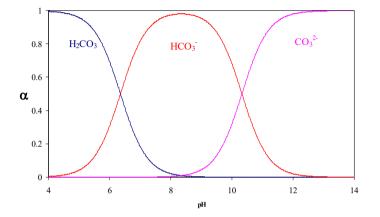
Organic phosphate - inhibition of aragonite nucleation (precipitation)

Deep waters - undersaturated with respect to CaCO₃ polymorphs (calcite, aragonite, vaterite)

- · Solubility increases with increasing pressure and salinity, decrease with temperature
- · Dissolution of calcitic and aragonitic shells

Mid-depth zone: 0 - 3.5 km \rightarrow sediment contains 85-95% CaCO₃

Transition zone: few hundred meters below 3.5 km \rightarrow CaCO₃ content drop to around 10%


Abyssal depth $\rightarrow 0\%$ CaCO₃

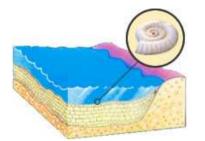
Lysocline = depth in the ocean below which the rate of dissolution of calcite increases dramatically ($d \approx 3.5$ km) **Calcite compensation depth =** depth at which calcite deposition is completely compensated with dissolution

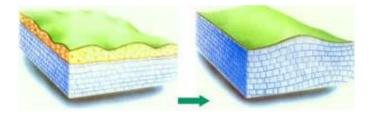
Role of calcium Carbonate in seawater

Precipitation / dissolution \rightarrow major buffering mechanism in seawater $Ca^{2+}(aq) + CO_3^{2-}(aq) \leftrightarrow CaCO_3(s)$ $H_2CO_3^0(aq) \leftrightarrow HCO_3^{-} + H^+ \leftrightarrow CO_3^{2-} + H^+$

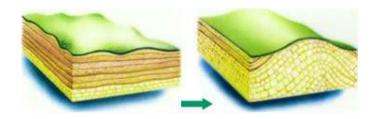
Regulation of intensity of CO₂ exchange at the interface water / atmosphere

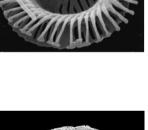
Global warming and seawater acidification by CO₂

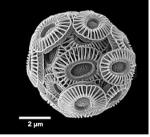

 p_{CO2} = 3,30·10⁻⁴ atm \rightarrow pH = 8,21 \rightarrow supersaturated (calcite, aragonite)

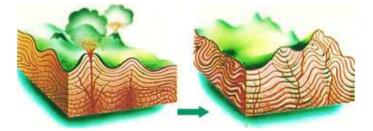

 p_{CO2} = 6,60·10⁻⁴ atm \rightarrow pH = 7,96 \rightarrow supersaturated (calcite, aragonite)

 p_{CO2} = 1,65·10⁻³ atm \rightarrow pH = 7,61 \rightarrow supersaturated (calcite), saturated (aragonite)

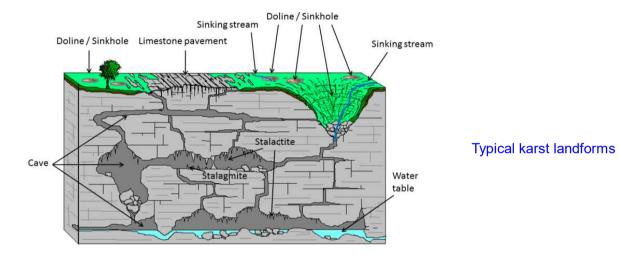

Calcium carbonate on mainland and karst topography


Diagenesis of seawater sediments




Chalk, 70 – 120 M years Planktonic or benthic protista (Foraminifera)

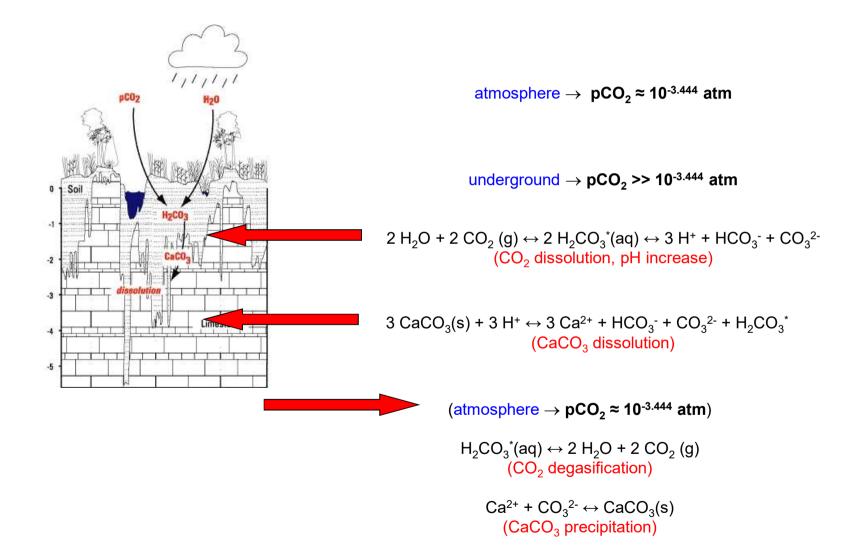
Limestone, 340 M years Phytoplankton (coccolithophores (algae))



Marble = metamorphic limestone or chalk

Calcium carbonate on mainland and karst topography

Karst landscape \rightarrow Earth's surface erosion of dense carbonate rock (limestone (calcite, aragonite) or dolomite)



http://en.wikipedia.org/wiki/

Global distribution of limestone

Mechanism of limestone dissolution in karst

Innovative Technologies and Sustainable Use of Mediterranean Sea Fishery and Biological Resources (FishMed-PhD 37 2022-03-01)

Crystallization in Environment and Environmental Protection

D. Kralj Ruđer Bošković Institute, Zagreb, Croatia

3. Calcium Carbonate precipitation and biomineralization

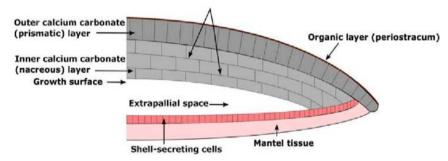
Research on CaCO₃ biomineralisation - implication on material science

Biomineralization – study of processes that lead to the formation of hierarchically structured organic–inorganic materials, generated by living organisms

Interdisciplinary – chemistry, biology, materials science...

Importance – paleontology, geology, geochemistry, biomedicine,, materials science (!!)

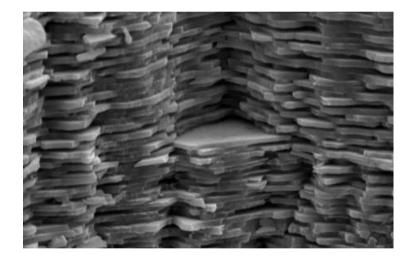
CaCO₃ biomineralization - marine, freshwater and terrestrial organisms
 Calcite (e.g. foraminifera, coccolithophores)
 Aragonite (e.g. corals)
 Aragonite and Calcite (e.g. bivalve shells)
 Vaterite and amorphous CaCO₃ (precursor phases, fish otoliths)

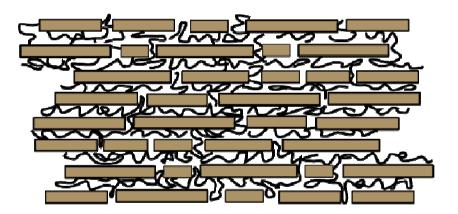

Relevance for materials science - production of advanced materials by simple process, at mild temperatures, pressure and chemical environment ...

Shell formation in mollusks

Molluscan shells \rightarrow 95–99% calcium carbonate, 1–5 % organic component

Organic-inorganic composite \rightarrow fracture toughness \approx 3000 X greater than inorganic crystals (ADVANCED MATERIALS) **Soluble and insoluble (macro)molecules** (proteins, sugars and lipids) \rightarrow responsible for crystal nucleation and growth **Organic components** \rightarrow characteristic of specific mineral layer and of specific species **Different mineral layers** \rightarrow different polymorphs (calcite and aragonite)


KELLY R. MARTIN et all. Teaching an Old Shell New Tricks: Extracting DNA from Current, Historical, and Ancient Mollusk Shells, BioScience 71: 235–248



Nacre

Inorganic component \rightarrow aragonite platelets (10–20 µm wide, 0.5 µm thick) arranged in a continuous parallel lamina Organic component \rightarrow chitin, lustrin and silk-like proteins

Research 1

Role of synthetic macromolecules in $CaCO_3$ biomineralization of mollusc shells

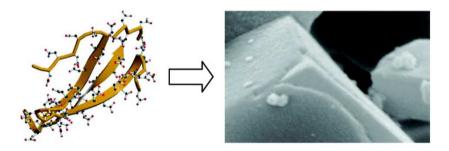
http://en.wikipedia.org/wiki/

Facts

Soluble macromolecules (**acidic glycoproteins** – reach in Asp and Glu) responsible for **polymorphism** in mollusk shells **Insoluble** organic matrix – control the shape, size and aggregation of crystals Amorphous CaCO₃– precursor phase to calcite or aragonite

Specific goals

Investigate interactions between mineral / organic additive by using **synthetic analogues** of natural macromolecules extracted from shells (poly-L-glutamic acid (pGlu), poly-L-aspartic acid (pAsp))


Investigate effects on

- (1) crystal growth
- (2) nucleation and

Apply "kinetic" approach to analysis of biomineralization, which is complementary to structural investigation

Hypothesis

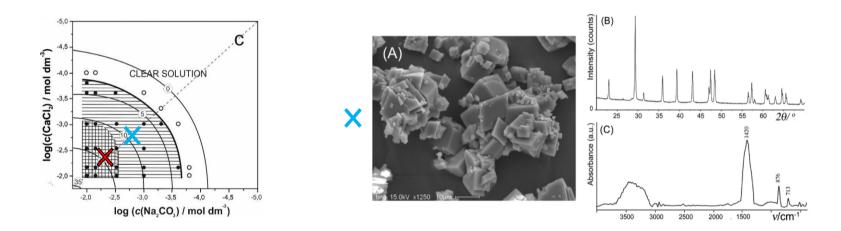
Organic / inorganic interaction in biomineralization ≈ interfacial interactions crystal / macromolecules in precipitation systems

Precipitation model systems \rightarrow crystal growth

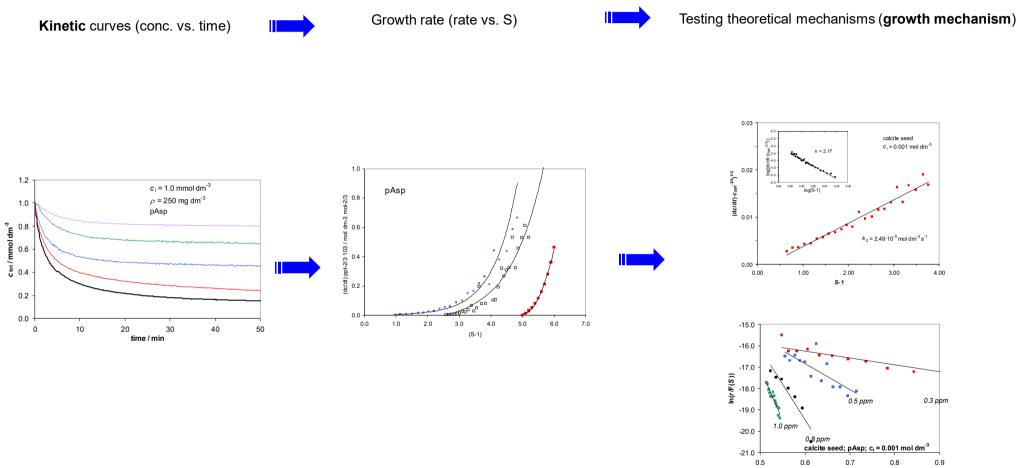
(1. Seed addition)

Constituent ionsLower supersaturation $c_i(CaCl_2)_{aq.} = c_i(Na_2CO_3)_{aq.} = 1.0 \times 10^{-3} \text{ mol dm}^{-3}$

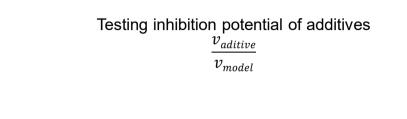
Higher supersaturation $c_i(CaCl_2)_{aq.} = c_i(Na_2CO_3)_{aq.} = 2.5 \times 10^{-3} \text{ mol dm}^{-3}$

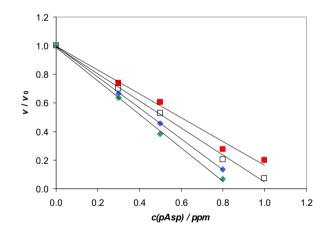

Additives0.3 ppm < c_i (pAsp, pGlu) < 2.0 ppm</td>0.2 ppm < c_i (pLys) < 7.0 ppm</td>

Why simple precipitation systems and simple model molecules (macromolecules)?? *Easy conclusion* about the basic molecular interactions at crystal/solution interfaces!!


A. Precipitation diagram

constituent ions, no additives


 $c_i(\text{CaCl}_2)_{aq.} = c_i(\text{Na}_2\text{CO}_3)_{aq.} = 1.0 \times 10^{-3} \text{ mol dm}^{-3} \rightarrow \text{calcite } (t_i > 5 \text{ min})$ $c_i(\text{CaCl}_2)_{aq.} = c_i(\text{Na}_2\text{CO}_3)_{aq.} = 2.5 \times 10^{-3} \text{ mol dm}^{-3} \rightarrow \text{vaterite } (t_i > 5 \text{ min})$



B. Crystal growth kinetics (growth mechanism)

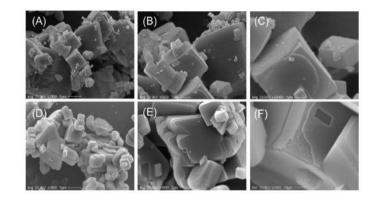
1 / In(S)

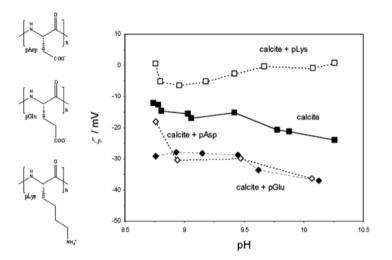
Characterization of crystals and solution

Morphology (SEM)

Electrophoretic mobility (particle charge)

pGlu



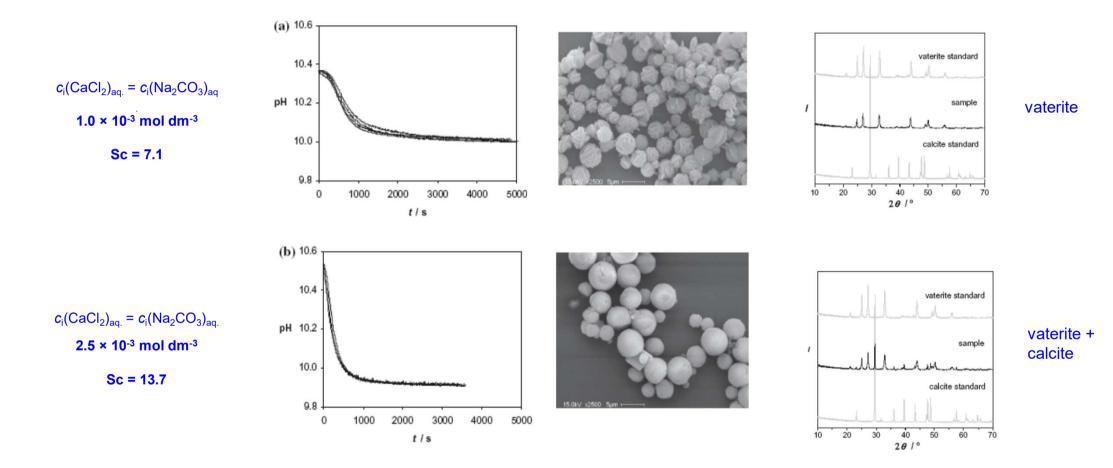

Figure 8. Scanning electron micrographs of calcite crystals after overgrowth experiments in the presence of pAsp (A-C) and pGlu (D-F).

model

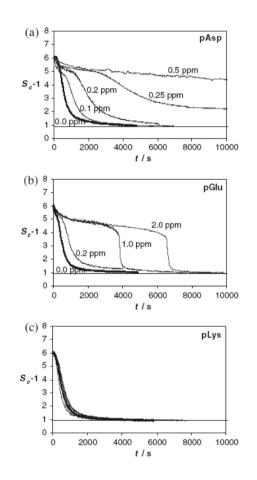
pLys

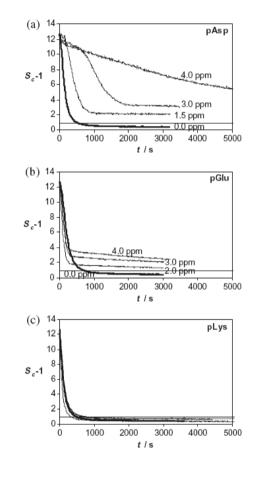
Figure 9. Scanning electron micrographs of calcite crystals after overgrowth experiments in the absence of additive (A-C) and in the presence of pLys (D-F).

Precipitation model systems \rightarrow **nucleation**

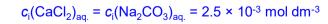

(2. Spontaneous precipitation)

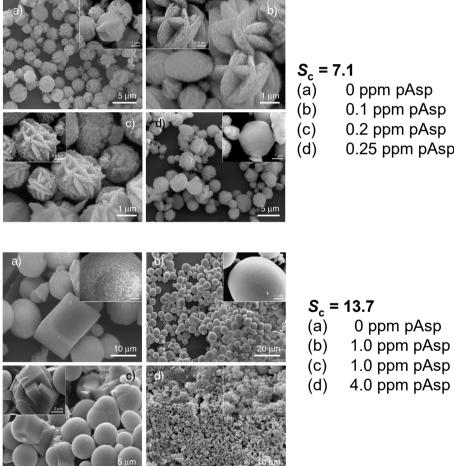
 $\begin{array}{l} \text{Constituent ions} \\ c_{i}(\text{CaCl}_{2})_{\text{aq.}} = c_{i}(\text{Na}_{2}\text{CO}_{3})_{\text{aq.}} = 1.0 \times 10^{-3} \text{ mol dm}^{-3} \\ c_{i}(\text{CaCl}_{2})_{\text{aq.}} = c_{i}(\text{Na}_{2}\text{CO}_{3})_{\text{aq.}} = 2.5 \times 10^{-3} \text{ mol dm}^{-3} \end{array}$


 $\begin{array}{l} \mbox{Additives}\\ 0.3 \mbox{ ppm} < c_{\rm i}({\rm pAsp, \,pGlu}) < 2.0 \mbox{ ppm}\\ 0.2 \mbox{ ppm} < c_{\rm i} \mbox{ (pLys)} < 7.0 \mbox{ ppm} \end{array}$

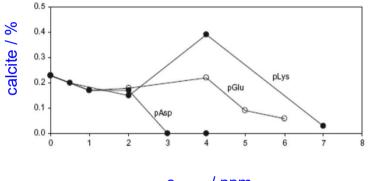

Why simple precipitation systems and simple model molecules (macromolecules)?? *Easy conclusion* about the basic molecular interactions at crystal/solution interfaces!!

B. Crystal growth kinetics / spontaneous precipitation / model system

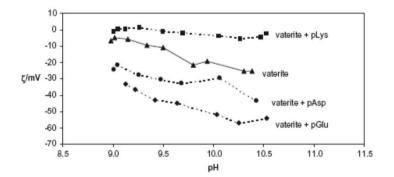

B. Crystal growth kinetics / spontaneous precipitation / additives


Sc = 7.1

Sc = 13.7


Characterization of crystals and solution

Morphology (SEM)

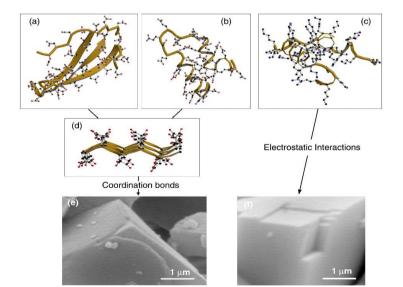

- 0 ppm pAsp
- 0.1 ppm pAsp
- 0.2 ppm pAsp
- 0.25 ppm pAsp

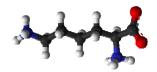
Polymorphic composition

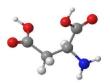
Electrophoretic mobility (particle charge) of vaterite

Conclusions

pGlu and pAsp – strong inhibition of crystal growth (coordinative binding to calcite surface??)


pAsp > pGlu pAsp: partial β -pleated sheet; pGlu – random coil


pLys – dual action:

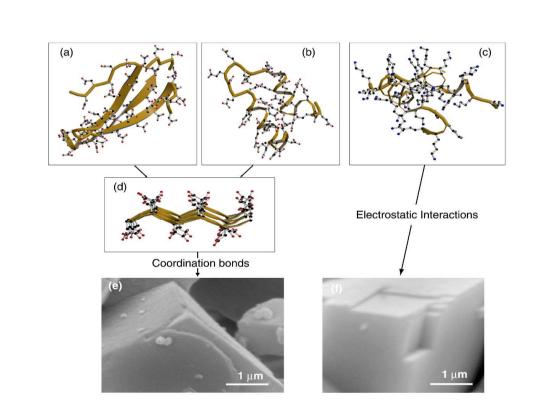

promotion at low concentration

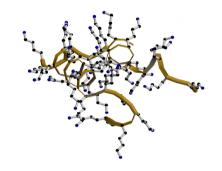
inhibition at high concentration (electrostatic binding to surface)

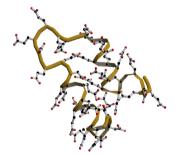
Vaterite formation - kinetically controlled

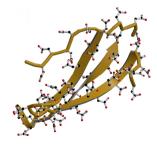
Research 2

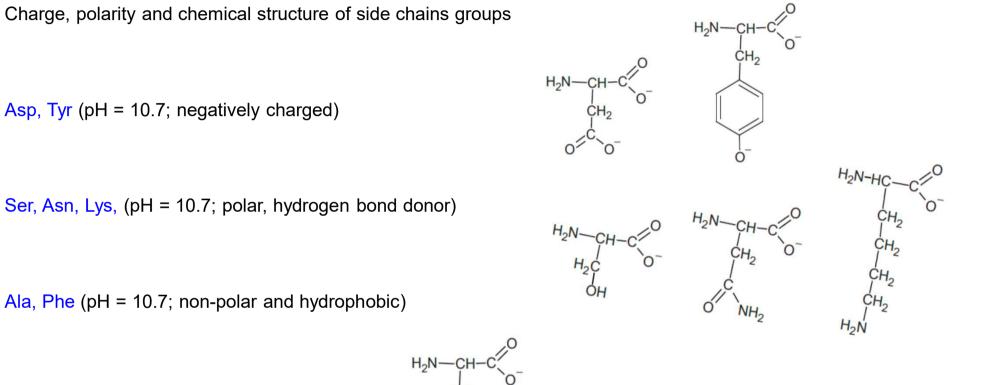
Role of amino acids' structure (charge, polarity) in CaCO₃ precipitation

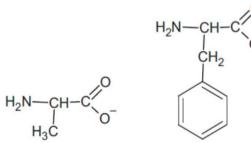





Motivation and hypothesis


Previously, not all possible interactions investigated Deeper insight into basic molecular interactions of CaCO₃ and organic Investigate role of hydrogen bonding donor side groups to additional interactions

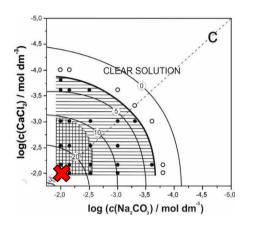


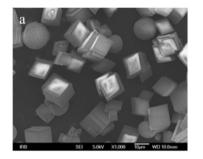

Selection of amino acids

Asp, Tyr (pH = 10.7; negatively charged)

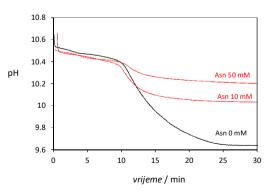
Ser, Asn, Lys, (pH = 10.7; polar, hydrogen bond donor)

Ala, Phe (pH = 10.7; non-polar and hydrophobic)

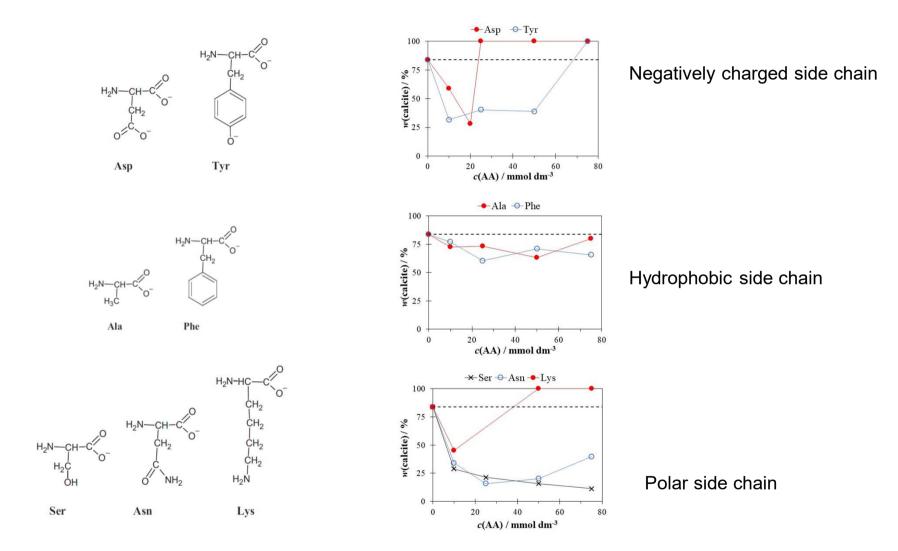

Spontaneous precipitation

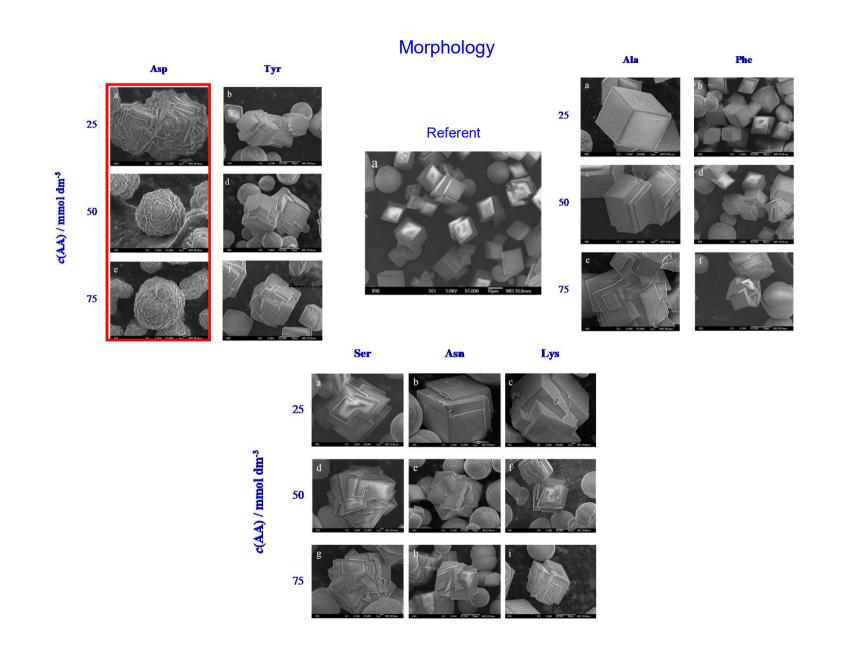

 $c_{\rm i}({\rm Ca}^{2+})$ = 0.01 mol dm⁻³ $c_{\rm i}({\rm CO}_3^{2-})$ = 0.01 mol dm⁻³

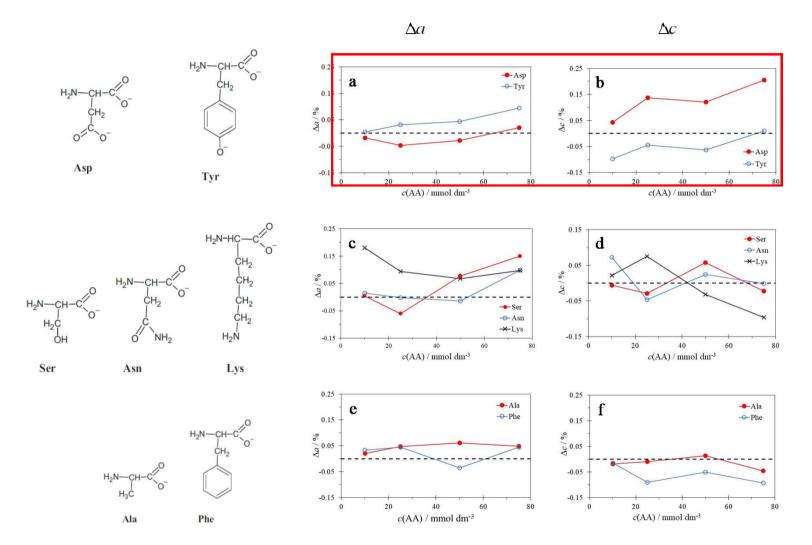
10.0 mmol dm⁻³ < *c*_i(AA) < 75.0 mmol dm⁻³ Asp, Tyr, Ala, Phe, Ser, Asn, Lys


> $pH_i = 10.7$ $\theta = 25 \text{ °C}, t = 30 \text{ min}$

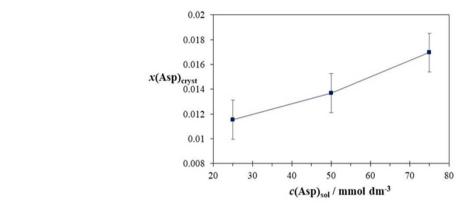
r, Asn, Lys

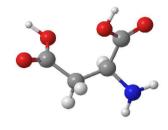




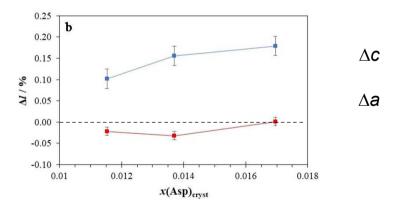

83% calcite + 17% vaterite

Polymorphic composition




Calcite crystal lattice distortions

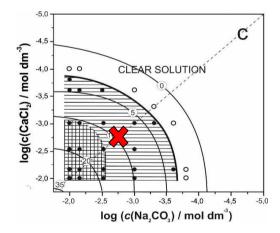
Asp incorporation into calcite lattice

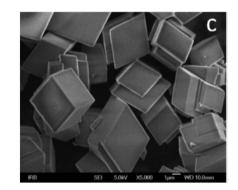


H2N-CH

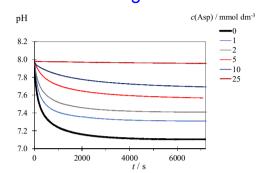
Asp

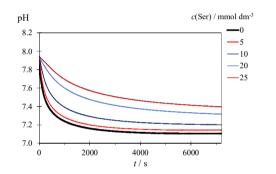
Relative changes of calcite crystal lattice

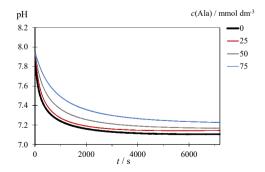



Seeded growth

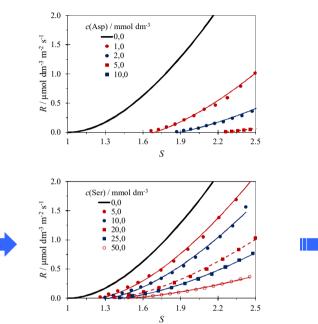
 $c_{i}(Ca^{2+}) = 0.001 \text{ mol } dm^{-3}$ $c_{i}(CO_{3}^{2-}) = 0.001 \text{ mol } dm^{-3}$

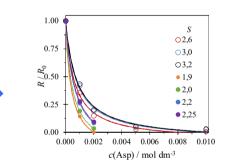

10.0 mmol dm⁻³ < c_i (AA) < 75.0 mmol dm⁻³ Asp, Tyr, Ala, Phe, Ser, Asn, Lys

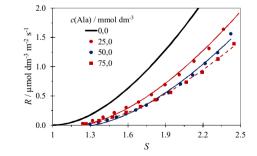

θ = 25 ° C



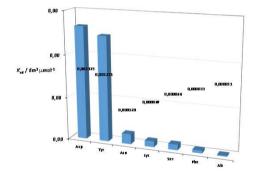
Progress curves







R/R_0 vs. c_{ad} analyses of additive interactions



Adsorption of amino acids, K_{ad}

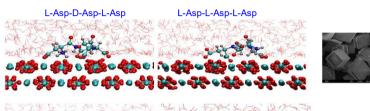
Amino acid	K _{ad} / dm ³ mmol ⁻¹				
Asp	0,001325				
Tyr	0,001231				
Asn	0,000120				
Lys	0,000069				
Ser	0,000066				
Phe	0,000033				
Ala	0,000011				

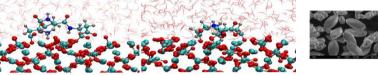
Asp, Tyr >> Ser, Asn, Lys > Ala, Phe

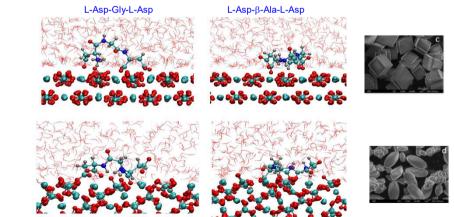

Conclusions

Non-polar amino acids (Phe, Ala) - insignificant effect on CaCO₃ precipitation

Charged and polar (hydrogen bonding) amino acids - (Asp, Tyr, Lys, Asn, Ser) changed the morphology, phase composition and crystal structure of the precipitates.


Asp had the strongest effect - significant change of calcite morphology and strong distortions of the crystal lattice.


Anisotropic distorsion of calcite ($\Delta c >> \Delta a$) - carboxylic groups on L-Asp substitute CO₃²⁻ and coordinate with Ca²⁺ ions from different layers in the crystal lattice.



Relatively strong effect of polar AA may indicate that the **hydrogen bonding could influence** AA interactions with calcite surfaces during their diffusion on surface or along the step.

Next step in research

Research 3

Role of macromolecules in $CaCO_3$ biomineralization of corals

http://en.wikipedia.org/wiki/

Facts about corals

Biomineralization of aragonite - hard skeleton Marine invertebrates - class Anthozoa of the phylum Cnidaria Form compact colonies of many identical individual polyps Reef builders

Colony of corals - genetically identical polyps Individual colonies - grow by asexual reproduction of polyps Breed sexually - by spawning

Energy and nutrients - from photosynthetic unicellular dinoflagellates (Zooxanthellae, genus Symbiodinium) **Zooxanthellae** - live within coral tissues and give color - require sunlight

http://en.wikipedia.org/wiki/

Aragonite precipitation in corals at high and low supersaturation conditions (higher growth rate during day-time, slower during night-time periods)
 Spontaneous precipitation – nucleation of aragonite
 Crystal growth – on preformed aragonite crystals
 Complex precipitation system / medium (extrapallial solution)

Specific goals

Obtain (extract) soluble organic macromolecules (SOM) from Balanophyllia europaea (light sensitive) Leptopsammia pruvoti (light insensitive)

Apply "kinetic" approach to analyze biomineralization of aragonite

Discern a role of Physicochemical parameters (supersaturation) Biological parameters (role of SOM) Spontaneous precipitation – nucleation (high supersaturation = day-time growth period, $S_a \approx 25$) Seeded precipitation (aragonite) - crystal growth (low supersaturation = night-time growth period, $S_a \approx 3.2$)

Hypothesis

Different growth mechanisms during the night and day precipitation of aragonite in corals

Model species

Balanophyllia europea (Scarlet coral)

Small stony, solitary coral Only in the Mediterranean Sea Photophilous species (needs sunlight to maintain alive symbiotic micro-algae)

Leptopsammia pruvoti (Sunset cup coral)

Solitary stony coral Azooxanthellate species (not contain the symbiotic unicellular algae) Western Mediterranean Sea, Adriatic Sea,...

http://en.wikipedia.org/wiki/

Selection of model system? Artificial seawater ≈ extrapallial fluid

	Na	K	Ca	Mg	HCO_3	CO_2	Cl	SO_4	Р
Extrapallial fluids	(mM): marine	species							
M. mercenaria	444	9.6	11.8	60.5	_	5.2	472	46.1	_
C. virginica	441	9.4	10.8	57	_	5.0	480	48.3	_
M_edulis	442	9.5	10.7	58	_	4.2	477	47.3	_
Sea water	427	9.0	9.3	53	_	2.5	496	51.1	_
P. fucata	431.5	12.7	9.7	50.7	3.7		524.0	28.0	1.54
P. attemuata	422.8	9.6	9.7	48.6	2.4		521.0	26.4	0.20
C. gigas	429.8	10.8	9.5	49.2	5.2		540.8	28.5	0.29
C. nobilis	425.4	10.9	9.9	48.7	3.7		520.2	26.2	0.53
Sea water	452.8	9.0	10.2	51.2	2.2		533.1	27.4	0.00
Extrapallial fluids	(mM): freshwa	ter species							
H. schlegeli	22.1	0.6	4.1	0.6	10.5		15.0	5.2	0.12
C. plicata	22.8	0.6	3.9	0.7	11.5		14.9	5.7	0.13
Fresh water	0.4	0.1	0.3	0.2	0.7		0.4	0.2	0.0

Inorganic compositions of extrapallial fluids from various marine and freshwater species compiled from two studies [2]

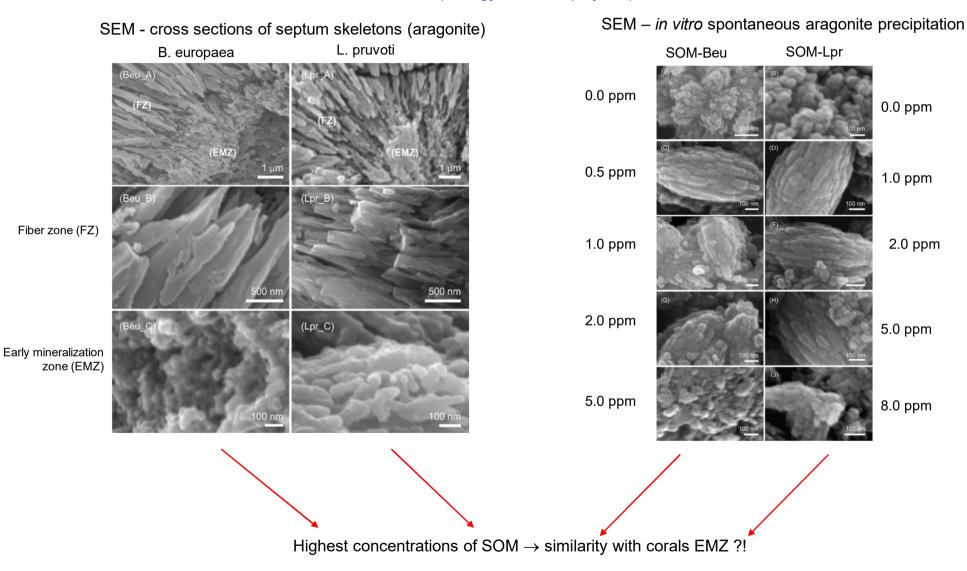
S. L. Tracy et al., Journal of Crystal Growth 193(1998)374-381

Model systems

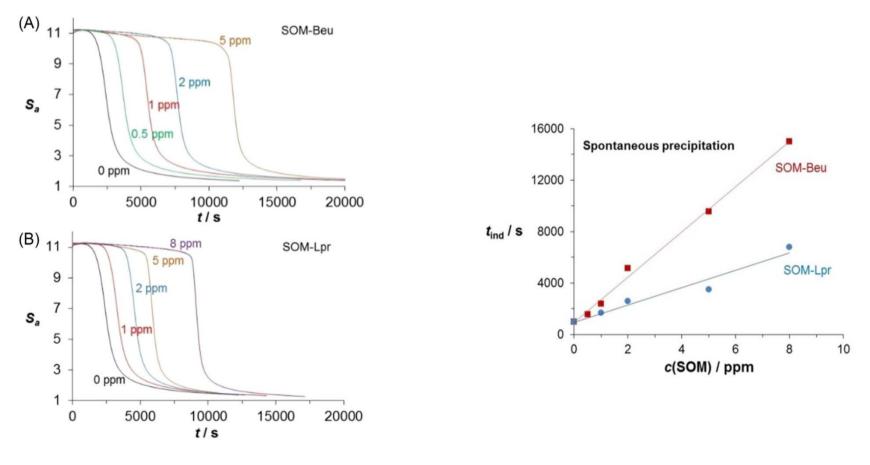
Spontaneous precipitation (ASW-1)

c((Na₂CO₃)/(NaHCO₃)) = 5·10³ mol dm³ c(CaCl₂) = 0.01 mol dm³ c(MgCl₂) = 0.05 mol dm³ c(NaCl) = 0.3 mol dm³ pH_i ≈ 10.2; S_a ≈ 11

Seeding precipitation (ASW-2)

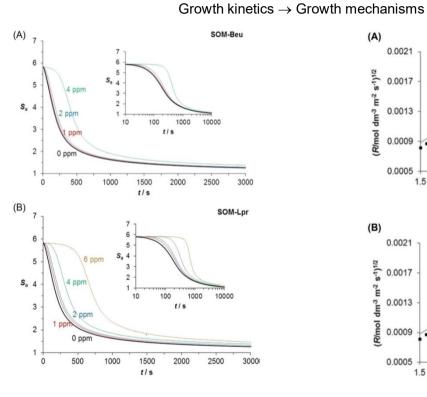

 $c((Na_2CO_3)/(NaHCO_3)) = 5 \cdot 10^3 \text{ mol } dm^3$ $c(CaCl_2)=0.01 \text{ mol } dm^3$ $c(MgCl_2)=0.05 \text{ mol } dm^3$ $c(NaCl)= 0.3 \text{ mol } dm^3$ $pH_i \approx 8.9; S_a \approx 5.8$

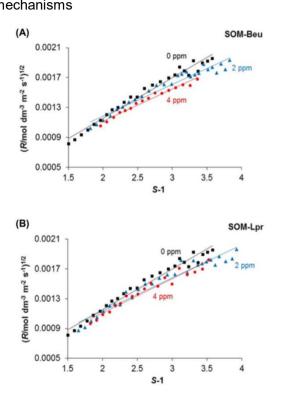
0.5 ppm < *c*_i(SOM-Beu) < 8 ppm 1 ppm < *c*_i(SOM-Lpr) < 8 ppm

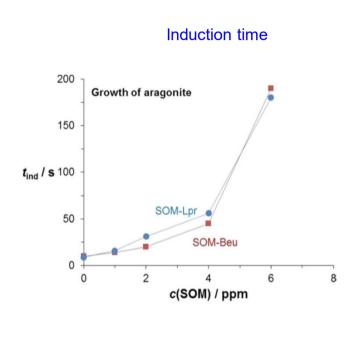

 θ = 21 ° C, t = 30 min

lonic equilibrium of relevant ionic species: H⁺, OH⁻, Ca²⁺, CaCO₃⁰, CaHCO₃⁺, H₂CO₃^{*}, HCO₃⁻, CO₃²⁻, Mg²⁺, MgCO₃⁰, MgHCO₃⁺, Cl⁻, Na⁺ Initial conditions: [Ca]_{tot}, [Mg]_{tot}, [Na]_{tot}, [Cl]_{tot} Measurements: pH

Spontaneous precipitation – nucleation of aragonite (ASW-1) Morphology, size and polymorphism

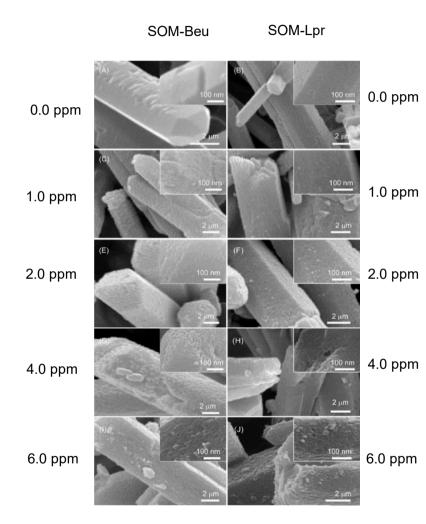



Spontaneous precipitation – nucleation of aragonite (ASW-1) Induction time



- Adsorption of SOM on nuclei and crystals!
- No change of mineralogical composition (aragonite)!
- Increased induction time with increasing concentration!

Seeded precipitation – crystal growth of aragonite (ASW-2) Kinetics



- Adsorption of SOM on nuclei and crystals!
- No change of mineralogical composition (aragonite seed)!
- No change of growth mechanisms
- Inhibition increase with SOM concentration
- Increased induction time with increasing concentration!

Seeded precipitation – crystal growth of aragonite (ASW-2) Morphology, size and polymorphism

- Seed regular prismatic aragonite
- No change of mineralogical composition after overgrowth in presence of SOM
- No change of morphology at low SOM concentrations
- Increased roughness at higher SOM concentrations
- Highest Beu concentration textural reorganization of particles

Conclusions

- Under high supersaturation conditions significant incorporation of macromolecules into mineral phase during the nucleation and growth of crystals.
- SOMs incorporate in aragonite, but not in calcite crystals under similar conditions.
- Precipitated aragonite appears as aggregates of nanoparticles resembling those observed in the EMZs.
- Inhibition of precipitation observed as a systematic increase of induction period with increasing SOM addition
- The growth mechanism of aragonite obtained by seeding experiments (growth on the spiral step), did not change after the addition of SOM. However, the presence of high concentration of SOMs induces a change in the morphology and shape of the growing crystalline units.
- Inhibition activity of SOM-Beu is stronger than that of SOM-Lpr
- Calcification of corals is controlled by both, pure physical-chemical mechanism (supersaturation) and biological mechanism - two-step mode of growth, according to which the SOM plays an active role in the process.

Innovative Technologies and Sustainable Use of Mediterranean Sea Fishery and Biological Resources (FishMed-PhD 37 2022-03-01)

Crystallization in Environment and Environmental Protection

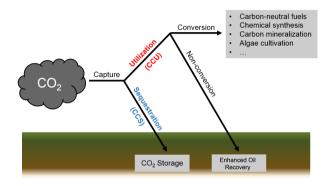
D. Kralj Ruđer Bošković Institute, Zagreb, Croatia

4. Crystallization in Environmental Protection

GLOBAL WARMING (GREENHOUSE EFFECT CAUSED BY CO₂ EMISSION IN ATMOSPHERE)

- Anthropogenic CO₂ emission 40 Gt / year
- **78** % of total anthropogenic **industry**
- Currently in atmosphere **410 ppm** CO₂
- By 2050 more than 800 ppm "Point of no return"

Carbon (CO₂) capture and storage (CCS)


- CO₂ capture from large point sources (coal-fired power plants, chemical plants, biomass power plants, cement production, steelmaking...) before entering the atmosphere
- **CO₂ Liquefaction** long-term **storage** in deep geological formation (possible leak into atmosphere)
- Expensive process (cheap product: CO₂)

Alternative!!

Carbon (CO₂) capture and utilization (CCU)

- CO₂ capture and use production of high-value chemicals
- Efficient technologies for CO₂ absorption into alkaline solution (monoethanolamine, NaOH, LiOH...)
 - $CO_2 + RNH_2 \rightleftharpoons RNHCOOH$ (2) $RNHCOOH + RNH_2 \rightleftharpoons RNHCOO^- + RNH_3^+$
 - CO_2 (g) + H₂O (aq) + 2 NaOH (aq) \rightleftharpoons Na₂CO₃ (aq)+ 2 H₂O (aq)
- Fixation by CaCO₃ precipitation

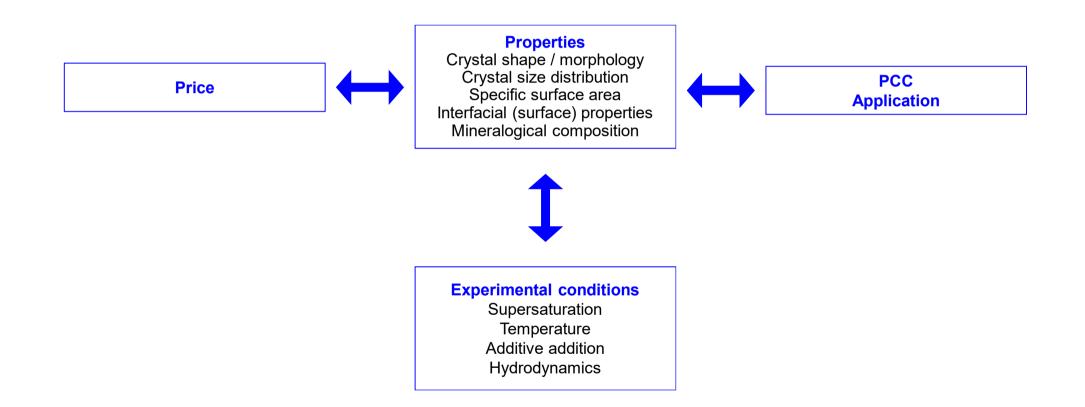
(waste CO_2 + waste (blast furnace slag, containing CaO) \rightarrow CaCO₃)

Precipitated Calcium Carbonate

Versatile product with high added value in comparison to grounded CaCO₃

Application

- Filler in plastics
- Filler in paints
- Filler in food and pharma industry
- Fertilizer
- Glass, ceramic production
- Filler and coating in paper industry



Research 1

Rational control of critical calcite properties by selected experimental conditions

Precipitated calcium carbonate

Physical chemical properties vs. Technological parameters

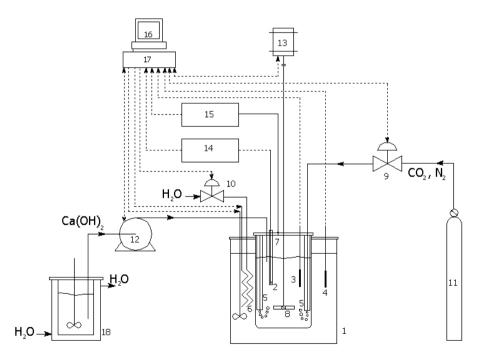
SELECTION OF MODEL SYSTEM

 $Ca^{2+}(I) + CO_{3}^{2-}(I) \rightleftharpoons CaCO_{3}(s)$

What about co-ions????? Cl⁻, NO₃⁻, SO₄²⁻.... Na⁺, K⁺, NH₄⁺,

PRECIPITATION MODEL SYSTEM Ca(OH)₂(*I*)-H₂CO₃(*I*)-H₂O

 $Ca(OH)_2(I) + H_2CO_3(I) \rightleftharpoons CaCO_3(s) + H_2O$

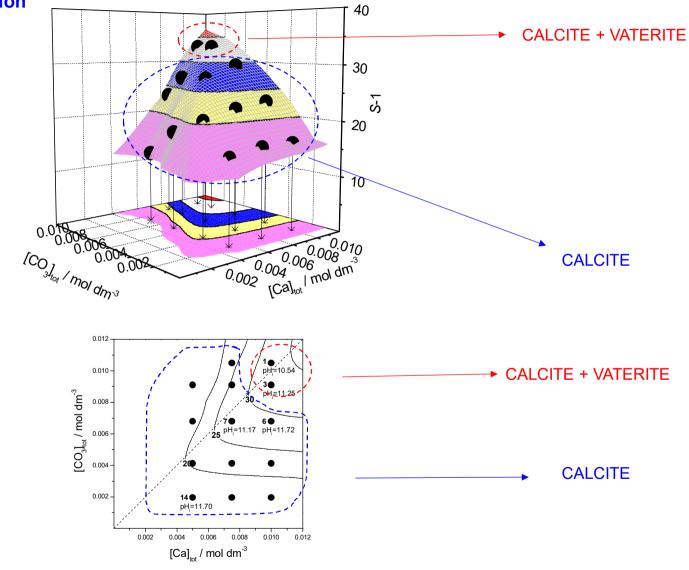

H⁺, OH⁻, Ca²⁺, CaCO₃⁰, CaHCO₃⁺, HCO₃⁻, CO₃²⁻

(Only constituent ions and H₂O autoprotolysis!!)

0.002 mol dm⁻³ < $c_i(Ca(OH)_2)$ < 0.010 mol dm⁻³ 0.002 mol dm⁻³ < $c_i(H_2CO_3)$ < 0.010 mol dm⁻³ θ = 25 °C

Impurities (Mg²⁺, SO₄²⁻, Cl⁻, NO₃⁻)

ANALYSES: chemical / mineralogical particle size distribution morphology

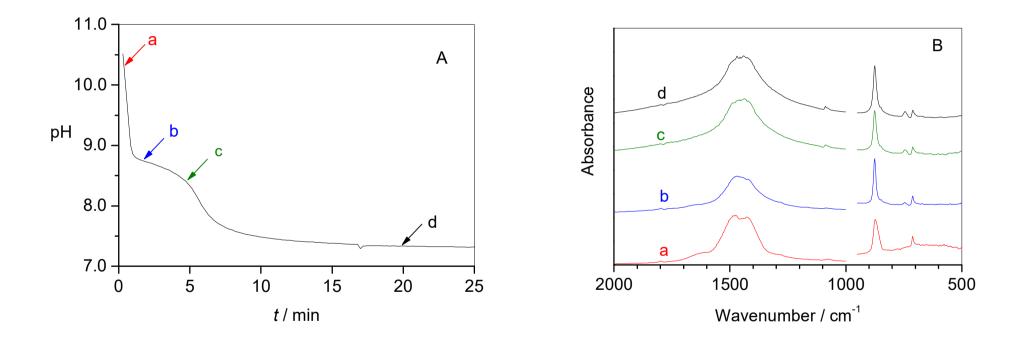


A. Precipitation diagram construction

Mixing $Ca(OH)_2$ (*I*) and H_2CO_3 (*I*)

aging for 20 min

3-D precipitation diagram (precipitation body)



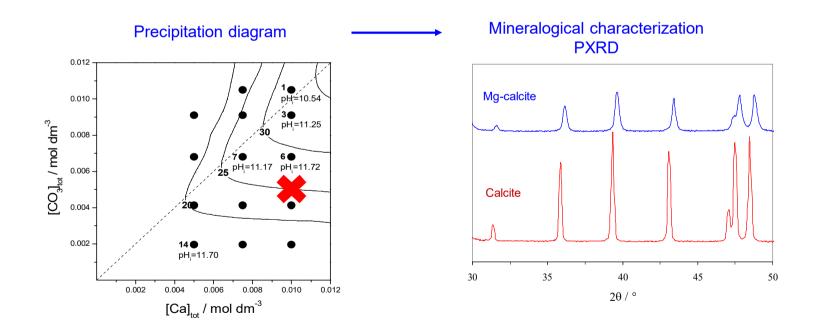
2-D precipitation diagram

B. Kinetics and mechanisms

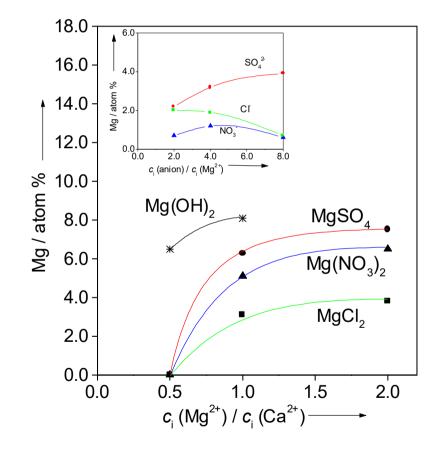
a. High initial supersaturation \rightarrow formation of precursors

Amorphous $CaCO_3$ (a-b) \rightarrow Vaterite (b-c) \rightarrow Calcite (c-d)

Role of additives / impurities on relevant properties of calcite (Mg²⁺, Cl⁻, NO₃⁻, SO₄²⁻)


Facts about role of Mg²⁺ in CaCO₃ precipitation

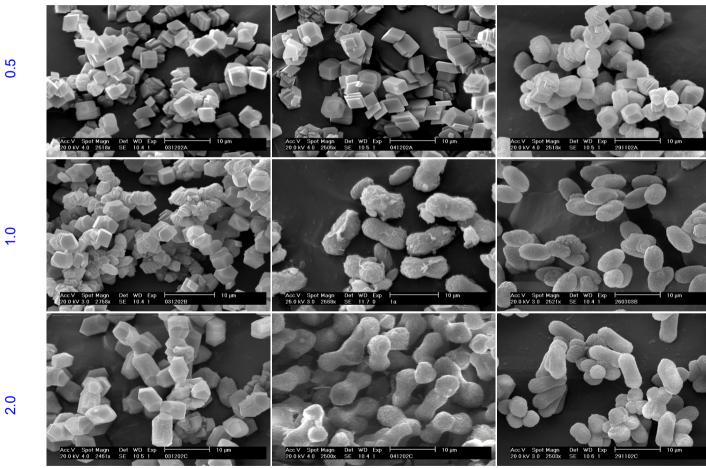
- Mg²⁺ often appear simultaneously with Ca²⁺ (seawater!!)
- Mg²⁺ effective inhibitor of CaCO₃ nucleation and growth
- Mg²⁺ initiate precipitation of aragonite
- Readily incorporate into calcite crystal lattice (Mg calcite!!)


Model system

 $c_i(Ca^{2+}) = 0.01 \text{ mol dm}^{-3}, c_i(CO_3^{-2-}) = 0.005 \text{ mol dm}^{-3}, t = 20 \text{ min}$ 0.001 mol dm⁻³ < $c_i(Mg^{2+}) < 0.020 \text{ mol dm}^{-3}$

- Initially precipitate calcite absence of Mg²⁺
- No precursor slow precipitation crystal growth dominant over nucleation
- pH < 9.45 (no Mg(OH)₂ coprecipitation)

Chemical composition Mg²⁺ incorporation into calcite crystal lattice

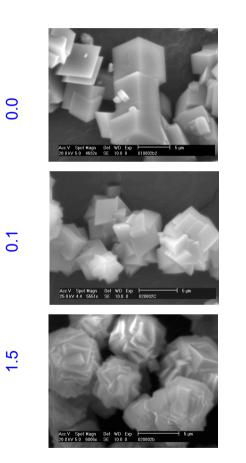


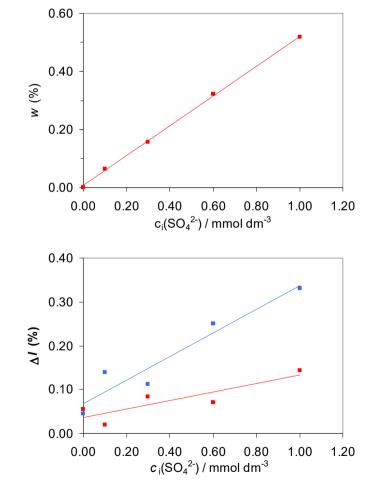
Morphology Different Mg²⁺ salts

 $MgCl_2$

 $Mg(NO_3)_2$

MgSO₄

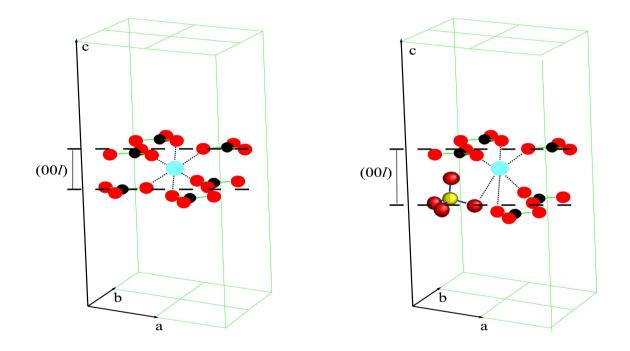

0.5

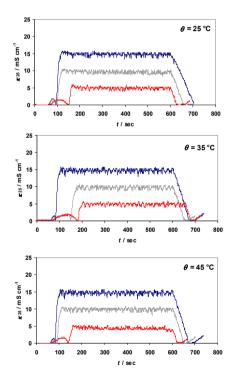

 $c_i(Mg^{2+})/c_i(Ca^{2+})$

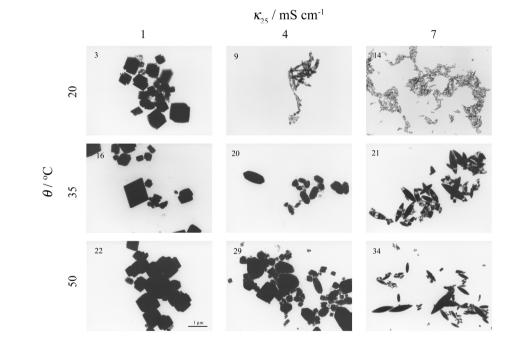
2.0

Chemical composition and morphology

SO₄²⁻ incorporation into calcite crystal lattice




 SO_4^{2-} content in calcite



Hydrodynamics Precipitation at constant composition and temperature

Conclusions

- Precipitation system Ca(OH)₂(*I*)-H₂CO₃(*I*)-H₂O optimal model for investigation of incorporation of inorganic additives
- · Higher supersaturation: precursor phases in mixture with calcite
- Extent of Mg²⁺ incorporation proportional to concentration of respective salt
- Extent of Mg ²⁺ incorporation depend on co-anion: increase MgCl₂ > Mg(NO₃)₂ > MgSO₄
- Most Mg²⁺ incorporated when no anion, Mg(OH)₂
- Isomorphic substitution of Ca²⁺ with Mg ²⁺
- Lattice distortion caused by anion increase: $SO_4^{2-} > H_2O > Mg^{2+}$
- Control of Mg-calcite morphology corelated with content of incorporated Mg²⁺ and anions

Research 2

Tufa formation Precipitation in karst water – monitoring and prevention anthropogenic impact

Facts

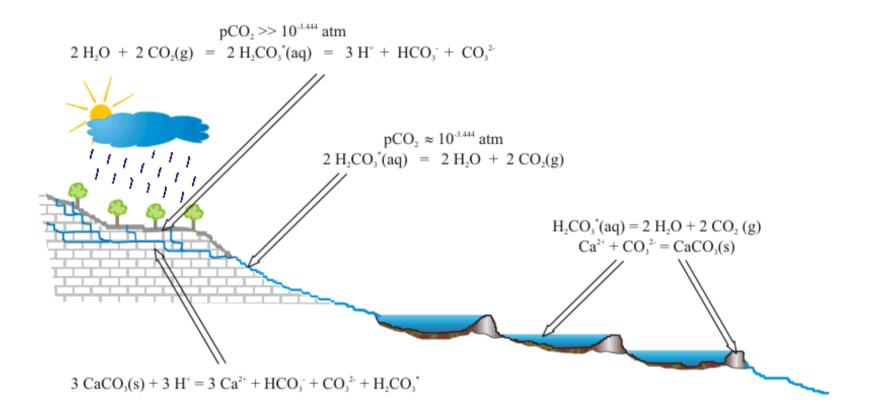
Tufa – porous limestone formed by precipitation in karst water at ambient temperature
 Travertine – precipitation at elevated temperatures
 Tufa formation – either in fluvial channels or lakes

Fluvial tufa

Spring – deposits form on emergence from a spring/seep
 Braided channel – deposits dominated by oncoids (layered structures formed by cyanobacterial growth)
 Cascade – deposits form at waterfalls (accelerated flow)
 Barrage – deposits formed as phytoherm barrages ("freshwater reef"), contain detritus (organic material - leaf, branches etc.

Lacustrine tufa

Formed at lakes' periphery and built-up phytoherms, stromatolites and oncoids (created by cyanobacteria, sulfate-reducing bacteria or proteobacteria)


Tufa formation endangered by human impact (temperature, increased phosphorous and organic content...)

Specific goals

Determination of the rate of mineralization, Plitvice lakes (Croatia) Describe process of tufa formation in a context of $CaCO_3$ growth mechanisms

Supersaturation? Substrate? Discern role of natural and anthropogenic inhibitors!

Typical karst water composition

		Plitvice lakes (Croatia)		
lons		<u>c_i(nat)</u> mmol dm ⁻³	<u>c_i(syn)</u> mmol dm ⁻³	
Na ⁺		0,043	0,043	
Ca ²⁺		1,520	1,520	
Mg ²⁺		0,910	0,910	
K+		0,015	0,015	
S Ic _i z _i I				
CI-		0,034	0,034	
NO ₃ -		0,00	0,00	
SO42-		0,020	0,010	
H ₂ PO ₄ -		-	-	
HCO ₃ -		4,770	4,484	
ΣI C iZi I				
	рН	8,24	8,80	
		(21 °C)	(25 °C)	

Calculation of ionic species distribution

Relevant ionic species:

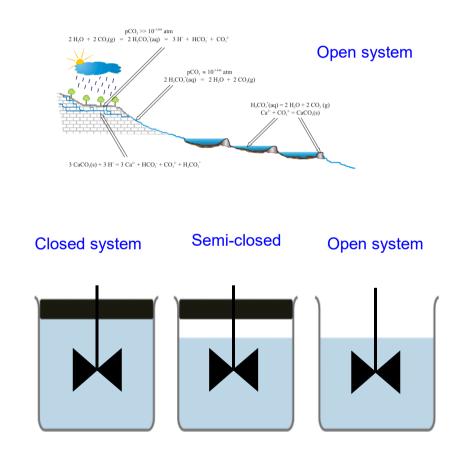
H⁺, OH⁻, Ca²⁺, CaCO₃⁰, CaHCO₃⁺, CaSO₄⁰, H₂CO₃^{*}, HCO₃⁻, CO₃²⁻, Mg²⁺, MgCO₃⁰, MgHCO₃⁺, MgSO₄⁰, SO₄²⁻, Cl⁻, NO₃⁻, Na⁺, K⁺

Initial conditions:

pCO₂, [Ca]_{tot}, [Mg]_{tot}, [Na]_{tot}, [K]_{tot}, [SO₄]_{tot}, [Cl]_{tot}, [NO₃]_{tot}

Measurements:

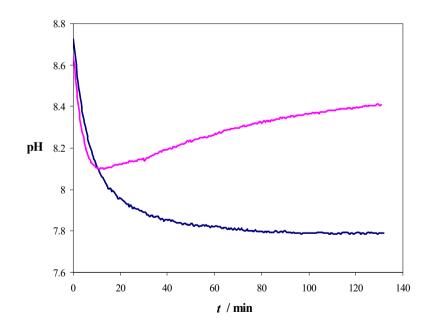
pH (Ca²⁺, CO₃²⁻)


CRITICAL STEP (!!)

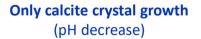
Selection of experimental set-up

Henry's law (gas law) - the amount of dissolved gas in a liquid is proportional to its partial pressure above the liquid. Slow equilibration!!!!!!

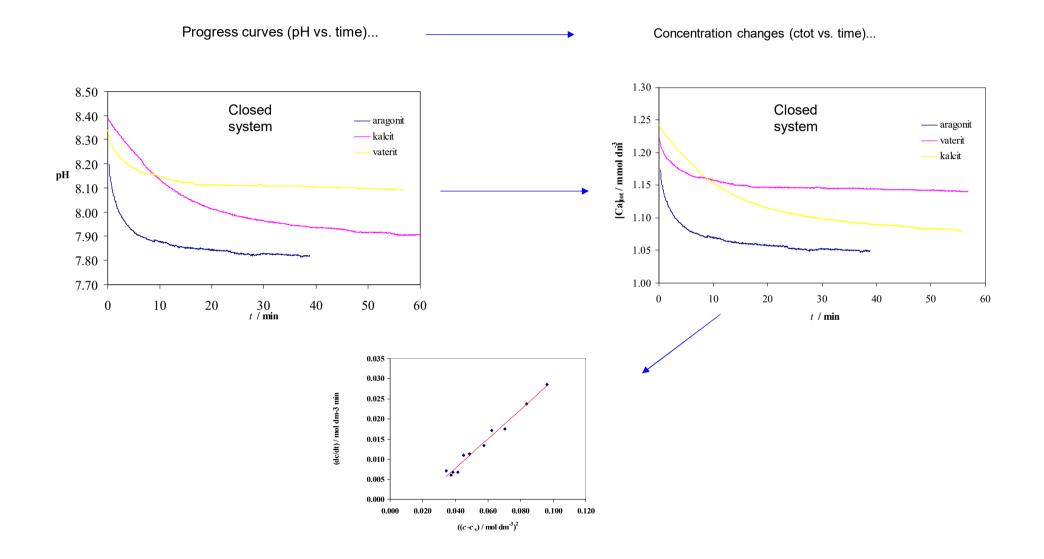
 $k_{\rm H} = \frac{[\rm CO_2]_{aq}}{[\rm CO_2]_g}$

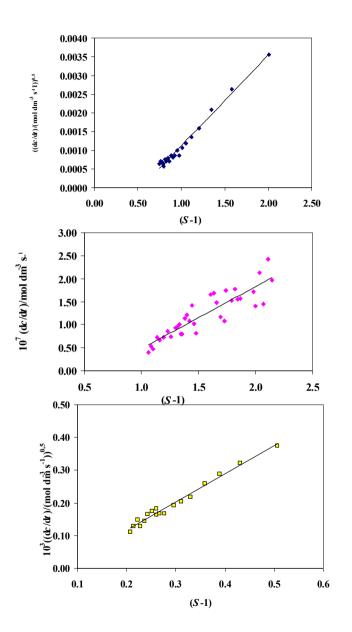

Necessary measurements	Closed system	Semi-closed system	Open system
pН	X	X	X
[Ca] _{tot}		X	Х
[CO ₃] _{tot}			х

pH measurements in closed vs. open precipitation system


 $V_{\rm o} = Vc$ $m_{\rm otv.} = m_{\rm zatv.}$

$$\begin{array}{l} \mathsf{Ca}^{2+} + \mathsf{HCO}_3^- \leftrightarrow \mathsf{Ca}\mathsf{CO}_3(s) + \mathsf{H}^+ \ (pH \ decrease) \\ \mathsf{CO}_2(g) \leftrightarrow \mathsf{CO}_2(\mathsf{aq}) + \mathsf{H}_2\mathsf{O} \leftrightarrow \mathsf{HCO}_3^-(\mathsf{aq}) + \mathsf{OH}^- \ (pH \ increase) \end{array}$$




Simultaneously two processes change the pH:

calcite crystal growth (pH decrease) + CO₂ degassing (pH increase)

Closed system – growth of different polymorphs

Growth Mechanism

Analyses of crystal growth kinetics (testing the growth rate mechanism) $dc/dt = -k A (c-c_s)^n$

 $n \approx 2 \rightarrow$ (growth on spiral dislocation, low saturation)

(Mg²⁺ incorporation only in calcite!!!)

Research 3

Phosphorous and Environmental Protection

Municipal and Technological Wastewater treatment: Precipitation or Crystallization ??

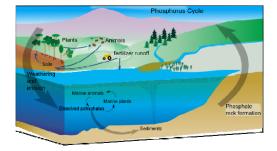
Phosphorous

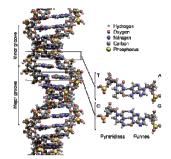
Essential for living world

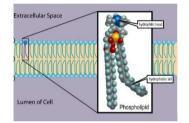
Organic molecules: DNA, RNA, ATP, phospholipids Inorganic – biomineralization of bones and teeth; pathological mineralization

Essential nutrient for plants and animals

Limiting nutrient for aquatic organisms Over-enrichment of P in fresh waters \rightarrow algae blooms \rightarrow eutrophication.


Technological importance


80% the total amount - production of fertilizers additives in the food industry and production detergents


Geochemical cycle

Transitions P from living world to mineral deposits \rightarrow about 10-15 M y

One of the slowest biogeochemical cycles Move quickly through plants and animals; Move slowly through soil or ocean

Apatite - major mineral

Ca₁₀(PO₄)₆(F, CI, OH)₂

Limited mineral resources Global P stocks 50 – 200 years ??? Unevenly distributed (80% of stocks in Morocco, China, USA, S. Africa

Eu critical raw material

2014 - EU Commission included phosphate ores in the list of 20 raw materials critical due to their economic importance and supply risk. (http://europa.eu/rapid/press-release_MEMO-14-377_en.htm)

Circular Economy

The Sixth Environment Action Programme of the European Community, "Environment 2010: Our Future, Our Choice"

... Natural resources and wastes are considered as priorities in order to contribute to sustainable development, which is a key feature of policy making in the European Union..."

... Reduction of volume of wastes...

... Recovery of waste streams...

Industrial waste water treatment

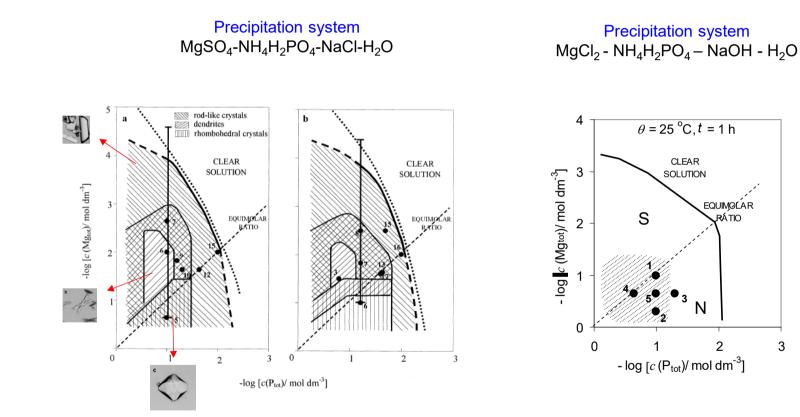
Simultaneous phosphorus and fluoride recovery by precipitation/crystallization with Mg²⁺ and NH₄⁺

Phosphate rock in phosphoric acid production

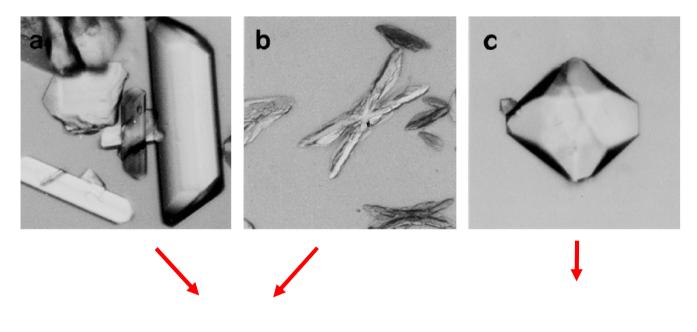
Fluoropatite $Ca_{10}(PO_4)_6(F,OH)_2$ Francolite $Ca_{10}(PO_4)_{6-x}(CO_3)_x(F,OH)_{2+x}$

Technology: digestion with sulfuric acid

 $Ca_{10}(PO_4)_6(F,OH)_2 + 3 H_2SO_4 \rightarrow 2 H_3PO_4 + 3 CaSO_4 (s) + F^- + (...)$


Waste streams H⁺, H₃PO₄ + 3 CaSO₄ (s) + F⁻

IIIIII CaF₂ (Fluorite) 50 years



A. Phase diagram

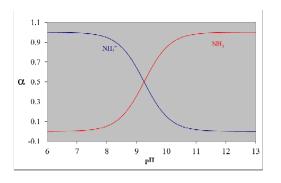
3

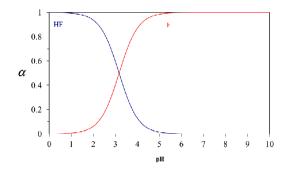
Chemical and structural characterization

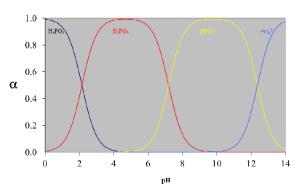
struvite (MgNH₄PO₄ \cdot 6H₂O) Newberyrite (MgHPO₄ \cdot 3H₂O)

B. Kinetics and crystal growth mechanisms

TYPICAL SYNTHETIC TECHNOLOGICAL WASTE WATER COMPOSITION (major components)


 $c (PO_4^{3-}) = 0.020 \text{ mol } dm^{-3} \equiv 1000 \text{ ppm}$ $c (F^-) = 0.100 \text{ mol } dm^{-3} \equiv 2000 \text{ ppm}$ $c (SO_4^{2-}) = 0.009 \text{ mol } dm^{-3}$ $c (Ca^{2+}) = 0.002 \text{ mol } dm^{-3}$

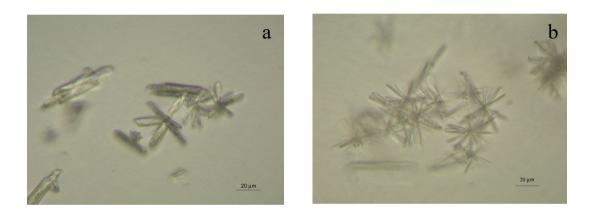

pH = 1.85


REMOVAL AND RECOVERY OF IMPURITIES BY PRECIPITATION AS Mg-NH₄ SALT ($8 \le pH_i \le 11$) adjustment with NH₄OH or KOH

STEP 0 (pH adjustment with NaOH)

Protolytic equilibria H⁺ , OH⁻ H₃PO₄, H₂PO₄⁻, HPO₄²⁻, PO₄³⁻ HF, F⁻

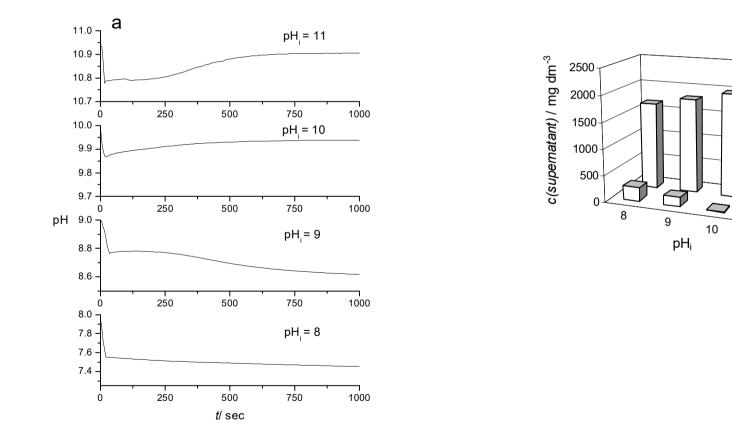
...


Multiple precipitation equilibria (different chemical and mineralogical products)

$$\begin{split} xMg^{2^{+}} + yH_n(PO_4)_m + zNH_4^+ & Mg_x(NH_4)_z(PO_4)_y \\ Ca^{2^{+}} + H_n(PO_4)_n & \leftrightarrow Ca_x(PO_4)_y \\ Ca^{2^{+}} + F^- & \leftrightarrow CaF_2 \\ Ca^{2^{+}} + CO_3^{2^{-}} & \leftrightarrow CaCO_3 \end{split}$$

c $(PO_4^{3-}) = 0.020 \text{ mol } dm^{-3}$ c $(F^-) = 0.100 \text{ mol } dm^{-3}$ c $(SO_4^{2-}) = 0.009 \text{ mol } dm^{-3}$ c $(Ca^{2+}) = 0.002 \text{ mol } dm^{-3}$

pH = 1.85

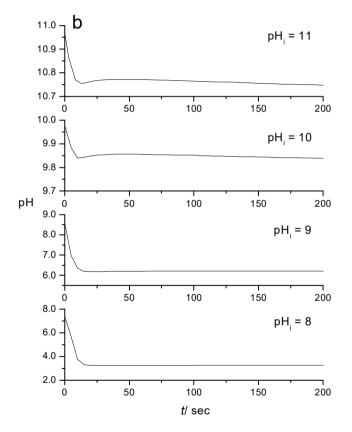

$pH_i = 10 \rightarrow Simultaneous$ fluoride and phosphate precipitation

$MgNH_4PO_4 \cdot 6H_2O + MgF_2$, CaF_2

STEP I: phosphate removal (STRUVITE)

synthetic waste water + (MgCl₂ - NH₄OH) PO₄³⁻+ F⁻ + Mg²⁺ + NH₄⁺ + 6H₂O \rightarrow MgNH₄PO₄·6H₂O(s) + F⁻

а


fluoride

phosphorus

11

STEP II: fluoride removal (FLUORITE)

synthetic waste water after STEP I + (CaCl₂ - NH₄OH) PO₄³⁻+ F⁻ + Ca²⁺ + NH₄⁺ \rightarrow CaF₂(s) + Ca₃(PO₄)₂(s)

Waste water after treatment

STEP I: c (F⁻) \approx 1500 mg dm⁻³ , c (PO₄³⁻) \approx 4 mg dm⁻³

STEP II: c (F⁻) < 9 mg dm⁻³, c (PO₄³⁻) < 0,1 mg dm⁻³

b 2500 2000 1500 1500 500 500 8 9 10 11 pH_i

Allowed to dispose in water bodies:

 $c (PO_4^{3-}) = 2 \text{ mg dm}^{-3}$ $c (F^-) = 8 \text{ mg dm}^{-3}$

Major by-products (circular economy!!)

Struvite - ecologically acceptable slow release Mg-N-P fertilizer, \approx 1000 USD /T Fluorite - CaF₂

Future research

Phosphorus recovery from municipal waste waters

Crystallization or Precipitation????

Municipal waste water treatment plants

(High levels of nitrogen and phosphorous)

Preliminary treatment Coarse material removal by screening (inorganic particles greater than 0.210 mm)

Primary treatment

Removal of a portion of the suspended solids and organic matter from the sewage **Removal** 50-70% of the suspended solids and 25-40% of the biological oxygen demand (BOD)

Secondary treatment

Removal of biodegradable organic matter (in solution or suspension) from sewage **Biological processes** used to remove dissolved and suspended organic matter **Microorganisms** in a sequenced aerobic or anaerobic process

Tertiary treatment

Advanced sewage treatment - final treatment stage to further improve the effluent quality before it is discharged or reused Several tertiary treatment process may be used at any treatment plant Tertiary treatment - may include biological nutrient removal, disinfection and removal of micropollutants (pharmaceuticals...)

Secondary treatment - Biological nutrient removal

Nitrogen removal by nitrification + denitrification

 $NH_4^+ \rightarrow NO_2^- \rightarrow NO_3^- \rightarrow N_2$ Typical values in raw sewage: 6-10 g/person/d for **total nitrogen** (35-60 mg/L) 3.5-6 g/person/d for **ammonia-N** (20-35 mg/L)

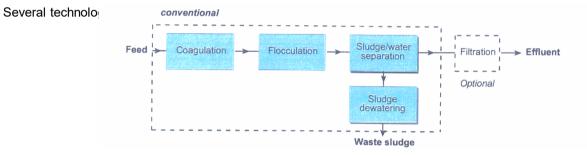
Phosphorus removal

Limiting nutrient for algae growth in many fresh water systems - eutrophication Fouling of downstream equipment such as reverse osmosis. Typical values: 0.7-2.5 g/person/d for total phosphorus (4-15 mg/L)

Enhanced biological phosphorus removal (EBPR) - two step process

 $PO_4^{3-} \rightarrow OH(PO_3)_n H \rightarrow PO_4^{3-}$

Aerobic conditions: polyphosphate-accumulating organisms (PAO, Accumulibacter)) take phosphorus and store as polyphosphate Anaerobic conditions: bacteria metabolize the polyphosphate and release orthophosphate into solution Disposal


Chemical process 1

Precipitation of phosphate at initial stage of water treatment

Precipitation by using ferric chloride, alum and/or lime

Floculation caused excessive sludge production as hydroxides (water 60 - 80 %)

Expensive chemicals, dfficult separation

Chemical process 2

Crystallization during the EBPR process (anaerobic stage)

Chemistry - identical to precipitation process: $3Me^{2+} + 2PO_4^{3-} + nH_2O = Me_3(PO_4)_2 \cdot nH_2O$

Different products possible: apatites, Mg-phospates, Mg-NH4-phosphates...

Inoculation by inorganic seed material - controll the supersaturation (low S) \rightarrow CRYSTALLIZATION

Low water content (1 - 5 %) and large pellets (0.8 - 1.0 mm)

Chemically pure pellets (90 - 98 % phosphate) - recycling or direct use as commercial product

No co-crystallization of impurities (heavy metals)

Low P in effluent (Ksp of different phosphate salts)

Multiple imapacts of phosphorous crystallization:

Struvite - ecologically acceptable slow release Mg-N-P fertilizer (\approx 1000 USD / T); Low operational cost - 5 - 7 USD / kg P Low amount of solid waste; Complementary to present technologies for waste water treatment Lowering the maintenance costs – prevention of incrustation

