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Introduction
I Various works proposing complex-valued Deep Neural Networks rose an increasing

interest on this architectures for their intrinsic ability to manage problems defined
on complex-valued features.

I For example:

. in the fields of signal and image processing, speech, signal and audio data are
naturally complex-valued after Fourier, Laplace or Complex Wavelet trans-
forms. Yang et al. (2020) and Eilers and Jiang (2023) presented stete-of-the-
art Automatic Music Transcription systems and Wang et al. (2020) evaluated
their complex-valued embeddings in text classification, machine translation
and language modeling with promising results.
. Quantum-inspired Machine Learning, an emerging topic of research in NLP
and AI, is completely based on complex-valued features and tensors. E.g.
Liu et al. (2023) presented a survey of novel quantum-cognitively inspired
models that solved the task of sentiment analysis with good performances
and Tamburini (2019) proposed a Quantum WSD system.
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Related Works

There are very few attempts in literature for creating a complex-valued transformer
and all of them pre-train the whole architecture from scratch, a very long and
computationally demanding process, especially for large architectures.

I Yang et al. (2020) concentrate on the development of a complex-valued trans-
former for speech, signal and audio data that are naturally complex-valued after
Fourier Transform.

I Wang et al. (2020), working on positional embeddings and proposing a solution for
modelling both the global absolute positions of words and their order relationships,
introduced a small complex-valued transformer architecture to test their ideas.

I The works from Eilers and Jiang (2023) and Li et al. (2023) have the goal
of providing a complete model for building complex-valued transformer encoders,
describing possible building blocks for doing it, testing different configurations and
parameters.
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The General Framework

I The transformer encoder (Vaswani et al., 2017) is primarily designed for process-
ing input text and producing intermediate representations of input sequences. It
consists of multiple layers of self-attention mechanisms and feed-forward neural
networks, each contributing to the encoding process of both single words and
entire sequences.

I LoRA (Low-Rank Adaptation) (Hu et al., 2022) is a technique recently introduced
to efficiently fine-tune transformer models. Instead of updating all the parameters
of a large pre-trained model, LoRA introduces a small set of low-rank matrices,
allowing the model to adapt to new tasks with significantly reduced computational
and storage requirements preserving the original model’s performance.

I A very recent work (Lialin et al., 2024) suggested that, by applying LoRA adapters,
it is possible to pre-train large transformer models from scratch obtaining com-
parable performance with respect to regular pre-training.
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The Idea
I The main idea and contribution of this work consists in using LoRA adapters to

convert a real-valued pre-trained transformer model into a complex-valued one
being able to produce as output complex-valued word and sequence embeddings.

I This process requires to continue the pre-training stage of a real-valued transformer
model for setting up complex-valued LoRA adapters and train the global model to
produce meaningful complex-valued embeddings.
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Reference Architecture: BERT
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The model (1/2)

Original ‘REAL’ Model Modified ‘COMPLEX’ Model
Embeddings: Embedding matrix E Adapted by summing a complex-valued

LoRA (cv-LoRA) adapter:
E′ = E + A · B†

Linear
Layers:

Output = x ·W +b, where x is the input
vector, W a weight matrix and b a bias
vector.

Apply a cv-LoRA adapter to the weight
matrix and add a further complex-
valued bias vector z:
Output = x · (W + A · B†) + (b + z).

Activation
Function:

GELU splitGELU(z) = GELU(R(z)) +
i GELU(I(z))

Multi-
head Self-
Attention:

Input vector X ∈ Rd×n

Q = X ·WQ,K = X ·WK ,V = X ·WV

Attention(Q,K,V) = so f tmax
(

Q·KT
√

dk

)
·V

Modify the three projection matrices
WQ,WK ,WV using cv-LoRA adapters:
Attention(Q,K,V) = so f tmax

(
|Q·K† |
√

dk

)
·V
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The model (2/2)

Original ‘REAL’ Model Modified ‘COMPLEX’ Model
Layer
Norm.: x′ = a x−E(x)

Var(x) + b
From Eilers and Jiang (2023):

Training
Heads
&
Loss
Functions:

Masked Language Model (MLM),
Next Sentence Prediction (NSP)
and
Task heads (linear projections)

cv-LoRA adapters for linear layers and Mod-
ulus function for transforming the complex-
valued outputs into a real-valued one and
inject it into standard loss functions.

Outline First Last Prev Next J



Evaluation
Datasets
I Continue Pre-Training. We used the 1/3/2022 dump of the Italian Wikipedia

and a “BookCorpus” we built using Italian ebooks.

I Evaluation. We used the UINAUIL dataset collection, a benchmark of six tasks
for Italian Natural Language Understanding (Basile et al., 2023).

Task Full name Task type Size
Acronym (training/test)
TE Textual Entailment Sentence pair classification 400/400
EVENTI Event detection & classification Sequence labeling 5,889/917
FactA Factuality classification Sequence labeling 2,723/1,816
SENTIPOLC Sentiment Polarity Classification Sentence classification 7,410/2,000
IronITA Irony Detection Sentence classification 3,777/872
HaSpeeDe Hate Speech Detection Sentence classification 6,839/1,263
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Experiments with CmplxBERTLoRA
I All the experiments rely on “dbmdz/bert-base-italian-xxl-uncased” (abbreviated

as ‘ItalianBERT_XXL’) used as baseline also in Basile et al. (2023).

I During pre-training we adopted the same BERT hyperparameters, namely
lr=1e-4, linear schedule with warmup and a batch size of 512.

I Our goal is to check if our complex-valued model can produce reliable embed-
dings for downstream tasks and not to get best scores in the leaderboard.

Model LoRA Trainable Non- Total
Rank r Trainable

ItalianBERT_XXL - 135.9M - 135.9M
CmplxBERTLoRA_8 8 2.6M 135.9M 138.5M
CmplxBERTLoRA_16 16 5.0M 135.9M 140.9M
CmplxBERTLoRA_32 32 9.9M 135.9M 145.8M
CmplxBERTLoRA_64 64 19.7M 135.9M 155.6M
CmplxBERTLoRA_128 128 39.2M 135.9M 175.1M
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Results

TE SENTIPOLC EVENTI
Model P R F1↑ Acc. P R F1↑ Acc. Acc.↑
Max_Freq_Baseline .275 .500 .355 .550 .360 .500 .416 .457 .839
ItalianBERT_XXL .391 .495 .379 .541 .764 .741 .740 .675 .936
(Basile et al., 2023)
ItalianBERT_XXL .524 .502 .383 .548 .758 .732 .733 .663 .958
(recomputed by us) ±.0608 ±.0039 ±.0267 ±.0045 ±.0051 ±.0066 ±.0081 ±.0123 ±.0002
CmplxBERTLoRA_8 .680 .540 .453 .583 .764 .748 .747 .680 .957

±.0548 ±.0222 ±.0540 ±.0176 ±.0107 ±.0069 ±.0072 ±.0068 ±.0006
CmplxBERTLoRA_16 .627 .538 .459 .580 .766 .747 .750 .685 .957

±.0260 ±.0166 ±.0369 ±.0135 ±.0125 ±.0059 ±.0079 ±.0093 ±.0003
CmplxBERTLoRA_32 .667 .597 .551 .627 .762 .741 .742 .675 .957

±.0225 ±.0698 ±.1225 ±.0550 ±.0065 ±.0068 ±.0071 ±.0061 ±.0012
CmplxBERTLoRA_64 .652 .569 .509 .606 .761 .745 .743 .674 .958

±.0360 ±.0528 ±.0894 ±.0441 ±.0090 ±.0102 ±.0106 ±.0120 ±.0007
CmplxBERTLoRA_128 .613 .561 .514 .592 .750 .733 .729 .657 .957

±.0641 ±.0555 ±.0912 ±.0511 ±.0121 ±.0107 ±.0152 ±.0199 ±.0013
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IronITA HaSpeeDe FactA
Model P R F1↑ Acc. P R F1↑ Acc. Acc.↑
Max_Freq_Baseline .249 .500 .333 .499 .254 0.500 .337 .508 .967
ItalianBERT_XXL .769 .765 .764 .765 .792 .791 .791 .791 .908
(Basile et al., 2023)
ItalianBERT_XXL .772 .769 .769 .769 .790 .789 .788 .788 .911
(recomputed by us) ±.0098 ±.0101 ±.0102 ±.0101 ±.0122 ±.0154 ±.0165 ±.0159 ±.0022
CmplxBERTLoRA_8 .750 .746 .745 .746 .787 .784 .783 .783 .909

±.0101 ±.0089 ±.0090 ±.0089 ±.0040 ±.0064 ±.0071 ±.0066 ±.0028
CmplxBERTLoRA_16 .754 .751 .751 .751 .780 .778 .777 .777 .907

±.0075 ±.0061 ±.0060 ±.0061 ±.0076 ±.0073 ±.0072 ±.0073 ±.0028
CmplxBERTLoRA_32 .750 .747 .746 .747 .794 .790 .789 .789 .907

±.0119 ±.0095 ±.0090 ±.0095 ±.0117 ±.0132 ±.0139 ±.0135 ±.0022
CmplxBERTLoRA_64 .755 .753 .752 .753 .789 .785 .784 .784 .910

±.0048 ±.0040 ±.0038 ±.0039 ±.0081 ±.0106 ±.0115 ±.0111 ±.0012
CmplxBERTLoRA_128 .744 .741 .741 .742 .785 .779 .777 .778 .909

±.0176 ±.0178 ±.0180 ±.0176 ±.0116 ±.0134 ±.0142 ±.0137 ±.0031
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Discussion
I We have to say that the UINAUIL benchmark is not without problems:

. TE dataset is very small and such large models struggle to reliably converge
to a reasonable minimum during training, leading to very unstable results.
. FactA is very problematic as well because classes are strongly skewed and the
Max_Freq_Baseline, always choosing the highest-frequency class, is able to
achieve an accuracy of 96.7%!

For all these reasons, we think that these two benchmarks should be excluded from
any further evaluation.

I Are produced embeddings really non-zero and complex-valued?
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Conclusions

I This pilot study presented a relevant set of experiments for testing the idea of
being able to ‘complexify’ a Transformer encoder architecture like BERT by
using complex-valued LoRA adapters.

I The obtained results on Italian models are very encouraging showing in a clear way
that this technique is effective and it maintains the same level of performance.

I This technique can in principle be used for complexifying any kind of transformer.

I A CmplxBERTLoRA model can be trained on a single 12/16GB GPU without
problems, while the pre-training of a full complex-valued BERT model from scratch
require at least 4 NVIDIA A100 64GB GPUs for about 500 hours!

I Thus, using LoRA for complexifying a model mitigates the need of complex and
expensive computational infrastructures not easily available to any scholar.

I Code and models will be made available soon.
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Time to finish!
Questions?
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