Braccesca Tuscany (Italy)

EXPERIMENT GOALS

To assess in a long-term perspective the effectiveness of the biochar soil amendment in a vineyard, in terms of:

- soil carbon sequestration and soil fertility;
- increasing soil water retention;
- vineyard ecophysiological parameters and productivity;
- - pattern of polycyclic aromatic hydrocarbons in soil.

DURATION OF THE EXPERIMENT

• Started on 2009 - ongoing

SITE DESCRIPTION

The field experiment was done in a vineyard at the "Marchesi Antinori – La Braccesca Estate" (Lat. 43°10'15"N; Long. 11°57' 43"E; 290 m a.s.l.), planted in 1995 (cv. Merlot, clone 181; rootstock 3309 Couderc). The trellis system is a single curtain with plant-row spacing of 0.8 m and 2.5 m; rows orientation is East–West. The vineyard is not irrigated. The soil is a shallow acids sandyclay-loam (USDA, 2005) textured. A randomized plot experiment, with three treatments and five replicates was setup in 2009. Each plot, 15 in total, had a surface area of 225 m² (7.5 m in width and 30 m in length) including 4 vineyard rows and 3 inter-rows. The treatments were: a single biochar application at a rate of 22 ton ha⁻¹ in 2009 (B); two biochar applications at a rate of 22 ton ha⁻¹ each, in 2009 and 2010 (BB); and a control (C). Biochar was applied in the inter-row space of the vine- yard using a spreader and it was incorporated into the soil using a chisel plow tiller to 0.3 m depth.

BIOCHAR AND ITS APPLICATION IN THE FIELD

The biochar applied was a commercial charcoal provided by "Romagna Carbone s.n.c." (Italy) obtained from orchard pruning biomass through a slow pyrolisis process at temperature of 500°C. The biochar at the end of the pyrolisis was crushed into particles smaller than 5 cm of diameter before the soil application. Biochar porosity and pore size distribution, BET, biochar water retention and the biochar bulk density have been determined.

MEASURED PARAMETERS

Field conditions: meteorological data

Soil analysis and interactions with biochar: periodic soil analysis, pH, water retention, soil biological index

Biochar dynamics and matrices: soil carbon content

Production data: quality and quantity of grape yield

Plant-soil dynamics and interactions: carbon and nitrogen soil-plant dynamics

PLANNED ACTIVITIES OR POTENTIAL EXPERIMENTAL ACTIVITIES

The long term field experiment of Braccesca will will be designed to represent an opportunity for the scientific community to test and verify the long-term effects of adding biochar to soil.

PRESENTATION OF THE WORKING GROUP

The Braccesca field experiment was planned and done by the Biochar Group of the IBE-CNR in collaboration with the Universities of Bologna, Firenze, Insubria, Napoli and Padova with a participation of the Antinori.

BIBLIOGRAPHY

- S Baronti, FP Vaccari, F Miglietta, C Calzolari, E Lugato, S Orlandini et al. (2014). Impact of biochar application on plant water relations in Vitis vinifera (L.). European Journal of Agronomy 53, 38-44.
- L Genesio, F Miglietta, S Baronti, FP Vaccari (2015). Biochar increases vineyard productivity without affecting grape quality: Results from a four years field experiment in Tuscany. Agriculture, Ecosystems & Environment 201, 20-25.
- AG Rombolà, W Meredith, CE Snape, S Baronti, L Genesio, FP Vaccari et al. (2015). Fate of soil organic carbon and polycyclic aromatic hydrocarbons in a vineyard soil treated with biochar. Environmental science & technology 49 (18), 11037-11044.
- A Maienza, S Baronti, A Cincinelli, T Martellini, A Grisolia, F Miglietta et al. (2017). Biochar improves the fertility of a Mediterranean vineyard without toxic impact on the microbial community. Agronomy for Sustainable Development 37 (5), 47.
- L Giagnoni, A Maienza, S Baronti, FP Vaccari, L Genesio, C Taiti et al. (2019). Long-term soil biological fertility, volatile organic compounds and chemical properties in a vineyard soil after biochar amendment. Geoderma 344, 127-136.
- AG Rombolà, D Fabbri, S Baronti, FP Vaccari, L Genesio, F Miglietta (2019). Changes in the pattern of polycyclic aromatic hydrocarbons in soil treated with biochar from a multiyear field experiment. Chemosphere 219, 662-670.

CONTACTS

Dr.a Silvia Baronti (IBE-CNR) silvia.baronti@ibe.cnr.it

Logos

Consiglio Nazionale

delle Ricerche

Istituto per la BioEconomia

ALMA MATER STUDIORUM

This work is distributed under license Creative Commons Attribuzione - Non commerciale - Condividi allo stesso modo 3.0 Unported.

UNIVERSITÀ

DEGLI STUDI

FIRENZE

PARTIMENTO DI SCIENZ TECNOLOGIE AGRARIE,

DAGR