
Titles and Abstracts

Workshop “Directions and Perspectives in the λ-calculus”

08/01/2024, Bologna (Italy)

� Beniamino Accattoli (Partout Team, Inria and LIX École Polytechnique)

It’s only lambda calculus (but I like it)

In this talk, I’ll present my view of the lambda calculus as a research
topic, discussing historical aspects, what I see as the main research areas,
what I think are necessary steps towards a solid and modern theory, how
my research fits into the picture, and the directions that I would like to
develop in the near future.

� Elena di Lavore (Compositional Systems and Methods group, Tallinn Uni-
versity of Technology)

Effectful transition systems

Transition systems appear across the computer science literature in dif-
ferent flavours: deterministic, non deterministic or stochastic; and each
of these flavours has its own definition of transition, bisimulation and
trace equivalence. We propose a definition of transition system in effectful
categories. These are premonoidal categories, where morphisms represent
effectful computations, with a chosen monoidal centre that selects the pure
computations. We define bisimulation and trace equivalence for effectful
transition systems and show that they capture the classical and proba-
bilistic notions. We show that bisimulation implies trace equivalence in
this general setting.

� Zeinab Galal (Dipartimento di Informatica, Università di Bologna)

Bidimensional fixpoint operators

Fixpoint operators are tools to reason on recursive programs and data
types obtained by induction (e.g. lists, trees) or coinduction (e.g. streams).
They were given a categorical treatment with the notion of categories with
fixpoints. I will present a categorification of this notion to a 2-dimensional
setting where the 2-morphisms allow us to model the execution steps for
languages with (co)inductive principles. We recover standard categorical
constructions of initial algebras and final coalgebras for endofunctors as
well as fixpoints of generalized species and polynomial functors. I will then
present ongoing work using this formalism in order to develop the theory
of traced monoidal bicategories. In the last part of the talk, I will present
joint work in progress with JS Lemay on the interaction of fixpoint theory
and differentiation.

1

https://sites.google.com/site/beniaminoaccattoli/
https://elenadilavore.github.io/
https://zgalal.github.io/


� Francesco Gavazzo (Dipartimento di Informatica, Università di Pisa)

Relational Mechanics of the λ-Calculus

In this talk, I will give a high-level introduction to program relation al-
gebras — a novel family of relation algebras I have recently introduced
stemming from the work by Gordon, Lassen, and Pitts on algebras of
term relations — by showing some of their applications to the operational
theory of the λ-calculus. In particular, I will outline how such algebras
allow us to give a unified and syntax-independent operational theory of
the lambda-calculus (and related formalisms) encompassing rewriting, dy-
namic semantics, and program equivalence and approximation.

� Giulio Manzonetto (Institut de Recherche en Informatique Fondamentale,
Université Paris Cité)

The lambda-calculus yesterday, today, and tomorrow

In this talk, I will argue why in my opinion studying the lambda-calculus
per se is still meaningful. On the one hand many interesting problems
are still open, on the other one the lambda-calculus is still influencing
nowadays advances in programming language theory and mathematical
logic. In particular, I will discuss the role of denotational semantics in the
past, the present, and the future of the discipline.

� Christina Matache (Laboratory for Foundations of Computer Science,
University of Edinburgh)

Parameterized algebraic theories and scoped effects

Algebraic theories provide a way of axiomatizing effects using operations
and equations, where operations are basic programming features like read-
ing and updating the state, and equations specify observably equivalent
programs. The monads arising from algebraic theories provide a way to
model lambda calculus extended with algebraic effects. Effect handlers
are a programming construct for implementing algebraic operations and
for modularly programming with them.

I will recall parameterized algebraic theories, a generalization of algebraic
theories, and scoped effects, an extension of effect handlers. For exam-
ple, exception catching can be implemented as a scoped effect, but not an
algebraic one. I will argue by example that the framework of parameter-
ized algebraic theories can be used to give equational axiomatizations to
scoped effects, and to characterize some existing models of scoped effects.

� Egbert Rijke (Faculty of Mathematics and Physics, University of Ljubl-
jana)

TBA

� Philip Saville (Department of Computer Science, University of Oxford)

Refined syntax and semantics via taking contexts seriously

Semanticists are increasingly using sophisticated mathematical tools to re-
fine traditional models of lambda calculi. Examples include using higher
category theory to capture rewriting or intensional information about
derivations, or using enriched category theory to study ’distances’ between

2

https://sites.google.com/view/francescogavazzo/home
https://www.irif.fr/~gmanzone/
https://homepages.inf.ed.ac.uk/cmatache/
https://users.fmf.uni-lj.si/rijke/
https://philipsaville.co.uk/


terms. These developments are paralleled by new finer-grained calculi re-
flecting the extra information available in such models. In these situations
the proofs for soundness and completeness, or even the question of how to
define the syntax in a canonical way, can quickly become far subtler than
in the traditional setting. In this talk I aim to show these difficulties are
alleviated by embracing Lambek’s old idea of using multi-ary structures,
in which maps can have multiple inputs. I will argue that the multi-ary
perspective clarifies the semantic interpretation of simply-typed lambda
calculi, and outline how the same ideas can be used to give both a canon-
ical syntax and clean soundness and completeness proofs for extensions of
the lambda calculus, such as with rewriting or effects. Finally I will try to
sketch some ideas for other kinds of refined semantics or semantics that
might be possible with these methods.

� Dima Szamozvancev (Department of Computer Science and Technology,
University of Cambridge)

The trials and tribulations of language formalisation

Computer formalisation makes enticing promises to type theorists and
programming language researchers: easing the burden hand-writing long,
tedious, inductive proofs, and letting them focus on the interesting, non-
trivial metatheoretic questions surrounding a novel technique or language
construct. The harsh reality, however, is that a significant new burden
is raised by something that pen-and-paper developments have the liberty
of glossing over: binding operators and the treatment of variables. More
than just an implementation detail to ignore in order to focus on the big
picture, it fundamentally affects the choice of syntax encoding, represen-
tation of substitution, equational theory and operational or denotational
semantics.

The λ-calculus is the perfect vehicle for experimenting with formalisa-
tion techniques, as even in its minimal form it contains enough constructs
to turn formalisation into an exercise in level-headedness. Developing
a comprehensive metatheory is a painstakingly stop-and-go process, and
the resulting code primarily consists of boilerplate to deal with substitu-
tion, rather than anything inherently calculus-specific. Motivated by these
frustrations, the talk will outline a language-formalisation framework that
addresses the problems in a methodical, mathematically justified way, giv-
ing users the tools to focus on the aspects of a calculus they are actually
interested in.

3

https://www.cl.cam.ac.uk/~ds709/

