Synlnflow:
a synthetic inflow boundary condition for OpenFOAM

Version 1.0 developed for OF 21.12

Syninflow:

September 1, 2022

Contents

1 About SynInflow
1.1 Main features e
1.2 Licensing and compatibility L

2 Getting started

2.1 Set up your case
2.2 Compiling syninflowLib.so e
3 Theoretical background
3.1 Inflow generation
3.2 Inflow correction
4 Usage
4.1 Inflow generation e
4.1.1 dinflowGenerationDicto
4.1.2 inflowGeneration.py

4.2 Inflow correction e 9

4.2.1 inflowCorrectionDict L 10

4.2.2 inflowCorrection.py 10

4.3 Tipsand tricks 10
5 Examples 11
5.1 Simplelnflow 11
5.2 ABLInflow e 12
6 Version history 14

1 About SynInflow

Thank you for your interest in Synlnflow. SynInflow provides an easy to use Boundary Condi-
tion, BC, able to impose synthetic turbulent velocity fields at the inlet of your CFD simulation.
It is developed at the Laboratory of Computational Mechanics of University of Bologna, primar-
ily targeting Computational Wind Engineering applications. For further info visit the website
https://site.unibo.it/cwe-lamc/en and do not hesitate to write us in case you have any doubt.

1.1 Main features

Synlnflow allows to generate synthetic turbulent fields, from homogeneous turbulence to atmo-
spheric boundary layer flows, which can be used as inflow BC for scale resolving simulations. The
adopted inflow generation method provides control over the turbulence intensity of the three ve-
locity components and allows a good control over the nine integral length scales. The generated
inflows can be easily modified by the user without editing the source code. Synlnflow also incorpo-
rates velocity corrections able to strongly alleviate the insurgence of spurious pressure fluctuations,
often encountered when using synthetic inflows. SynInflow also provides basic support to allows
for time-variability of the applied velocity field.

1.2 Licensing and compatibility

SynInflow is released under the GNU GENERAL PUBLIC LICENSE Version 3. The software is
provided ”as is”, without warranty of any kind, express or implied, including but not limited to the
warranties of merchantability, fitness for a particular purpose and noninfringement. In no event
shall the authors or copyright holders be liable for any claim, damages or other liability, whether
in an action of contract, tort or otherwise, arising from, out of or in connection with the software
or the use or other dealings in the software.

The present implementation has been developed within OpenFOAM 21.12 and it is expected to
work also for subsequent ESI-OpenCFD releases, while adaptation to the OpenFOAM Foundation
version requires minor modifications of the source code.

2 Getting started

2.1 Set up your case

Setting up your synInflow BC usually requires four simple steps, reported in Fig. 1.

Copy/compile "syninflowLib.so”

Run “inflowGeneration.py”

Run “inflowCorrection.py”

Setup the syninflow BC for “U”

Figure 1: Steps needed to use the synInflow BC.

Firstly, copy the synInflowLib.so into your case main folder. If you are using it for the first
time, you find it in the provided examples or in the provided CodeOF folder. It is anyway advisable
to recompile the code for your system following the instructions provided in Section 2.2, it takes
just a few seconds. Then, add the following line at the beginning of your controlDict:

libs ("./synInflowLib.so") .

Once syninflowLib.so is in your case main folder and you added it in the controlDict, run inflowGeneration.py
producing the inflowGenerationDict as detailed in Section 4.1. Then, run inflowCorrection.py pro-

ducing the inflowCorrectionDict as detailed in Section 4.2. Finally, set the BC for the velocity

field, U, in the 70" folder as follows (where the name of the inflow patch has been here chosen to

be inlet):

inlet
type synInflow;
origin (0 0 0);
zDir (0 0 1);
sf dictName inflowGenerationDict;
ve_dictName inflowCorrectionDict;
value uniform (0 0 0);

I3

The meaning of the keywords is detailed below:

type: [required] selects the synInflow BC. Do not change;
origin: [required] origin of the local reference system used to evaluate the inflow velocity field (it

Figure 2: Examples of valid and invalid meshes at the inflow patch.

can be used, for instance, if the ground plane does not pass through the origin);

zDir: [required] unit vector indicating the local reference system z—direction (in which the time-
averaged velocity and turbulence characteristics can vary according to the profiles described in
Section 4.1);

sf dictName: [required] name of the dictionary containing data needed to build the synthetic flow.
The dictionary must be put in the system folder and it is usually generated using inflowGenera-
tion.py, as described in Section 4.1;

vc.dictName: [optional] dictionary containing data needed to calculate the velocity corrections. If
not provided corrections are not calculated and the uncorrected synthetic field is applied. The
dictionary must be put in the system folder and it is usually generated using inflowCorrection.py,
as described in Section 4.2;

value: [required] initial value not actually used.

NB 1 : The inlet patch is can be arbitrarily oriented, but it is required to be planar.

NB 2 : The current implementation of synInflow requires the inlet patch to be meshed con-
formally exclusively with quadrilateral faces in order to calculate inflow corrections correctly.
Examples of valid and invalid meshes at the inflow patch are provided in Fig. 2. It is always
possible to use the BC without calculating corrections (and so expecting higher spurious pres-
sure fluctuations) eliminating the optional keyword vc_dictName. In this way corrections are
not calculated and no restriction on the adopted mesh is present.

NB 3 : The current implementation of synInflow does not allow to reconstruct a decomposed
case.

NB 4 : The current implementation of synInflow does allow for restarts, but minor differences
in the obtained results might appear in proximity of the restart time.

NB 5 : In the present version, applying corrections generally leads to a slight increase of
turbulence intensity for velocity components normal to the time-averaged flow (see Section
5.2). If this is a problem, target a lower turbulence intensity from the beginning.

2.2 Compiling synInflowLib.so

In order to compile syninflowLib.so for your system, open a terminal and go to the provided
CodeOF folder. Then execute the command:

wmake libso

Then copy the newly created syniInflowLib.so into your case main folder.

3 Theoretical background

The present BC can be seen as the union of two components: an inflow generation method and an
inflow correction procedure. The two components are briefly described below.

3.1 Inflow generation

SynInflow uses a spectral approach to generate random fluctuations. In the homogeneous case, the
velocity field is calculated as:

us(x,t) =0+ Z [picos(2m ki’ xi* + ¢;) + aisin(2m ki’ xi* + ;)] (1)

7

where ug = [ug,vs,ws]” is the synthetic velocity field, @ = [u,0,0]7 is the time-averaged velocity
field, x = [z,y, 2]7 is the position vector, x* = [z —ut,y, 2]* is a modified position vector, in which
the convection operated by the time-averaged velocity field, @, is taken into account. Vectors p;
and q; are amplitude vectors, k; is a wavevector and ¢; is a random phase (actually redundant in
this form).

The synthetic inflow generator here adopted (i.e. the technique used to calculate ki, p; , qi) is
called Prescribed-wavelength Random Flow Generator®, PRFG3, and it is described in [1] for the
homogeneous case and in [2] for the inhomogeneous case, targeting Atmospheric Boundary Layer,
ABL, flows. PRFG? allows to impose the turbulence intensity for all three velocity components
and provides good control over all nine integral length scales. Turbulence is currently generated in
agreement with the well-known von Karméan spectrum.

In homogeneous conditions, turbulence is built in order to be divergence-free and to approximate
momentum balance using linear convection based on the time-averaged velocity. This ensures that
the resulting syntectic turbulence field complies with the linearization of Navier-Stokes equations
in the proximity of the time-averaged conditions, in order to correctly transmit the synthetic field
within the CFD domain. For inhomogeneous cases, the synthetic turbulent field generated using
PRFG? can only approximate the aforementioned conditions in the case of slowly varying time-
averaged velocity and turbulence properties [2].

3.2 Inflow correction

Once the synthetic turbulence field is generated, it can be applied at the inflow patch as a Dirichlet
type BC. Unfortunately, this almost inevitably leads to spurious pressure fluctuations. The origin
of such pressure fluctuations shall be attributed to mismatches between the synthetic turbulence
field and

1. the Navier-Stokes equations;
2. the BCs confining with the inflow patch.

As regards (1), if the synthetic field is homogeneous, PRFG? ensures that the Navier-Stokes
equations linearized in correspondence of the time-averaged velocity field are fulfilled (also assuming
null-normal pressure gradient as usually specified at the inflow and disregarding viscous terms). In
other cases, the generated turbulent field will only approximately satisfy such conditions, so that
some spurious pressure fluctuations shall be generally expected. As regard (2), synthetic inflow
conditions usually do not take into account BCs confining with the inflow patch.

~ /
Prevented fluxes s T
T 7‘7 Side patches (e.g. slip)
x| 7

/1

Incoming flow _
\ i = >
7 e

Inflow patCh/'[l 1 — Inflow patch boundary

Figure 3: Sketch of an inflow patch confining with side patches which prevent fluxes.

As an example, consider a channel flow for which the channel walls prevent mass fluxes along
their normal direction (see Fig. 3). If the synthetic flow applied at the inflow does not take such
aspect into account, spurious pressure fluctuations arise at the edge between the inflow patch and
the side walls to compensate for such missing mass fluxes.

The procedure here adopted to moderate spurious pressure fluctuations is named Variationally
Based Inflow Correction, VBIC [3]. The VBIC procedure has been designed aiming at moderating
spurious pressure fluctuations due to both (1) and (2) applying corrections to the synthetic velocity
field, so that

u = ug + uc, (2)

where u is the corrected velocity field actually applied at the inflow patch and u. = [0, ve, we|”
are velocity corrections calculated in order to be of minimal norm. Notice that is it sufficient to
apply corrections only to the velocity components laying on the plane of the inlet patch. Interested
readers can refer to the original paper for details [3].

4 Usage

As already stated, using the synInflow BC requires to provide two dictionaries which contain all the
data needed to generate the synthetic flow and calculate corrections, named inflowGenerationDict
and inflowCorrectionDict, respectively. Such dictionaries are usually automatically generated re-
lying on inflowGeneration.py and inflowCorrection.py. Both routines have been developed using
Pythn 3.8. Once generated, such dictionaries must be copied in your case system folder.

As a general remark, the synthetic inflow velocity field is initially generated in such a way that
the z— direction corresponds to the time-averaged flow direction and the z— direction corresponds
to the one in which both the time-averaged velocity and the turbulence properties can vary. Then,
using the BC in OpenFOAM, the x— direction is identified as the inlet patch inward normal, the
z— direction is specified by the user (as reported in Section 2.1, using the zpir parameter) and
the y— direction is obtained by cross product. It follows that in the current implantation the
time-averaged velocity is always normal to the inflow patch.

4.1 Inflow generation

SynInflow uses profiles in order to specify variations of the time-averaged velocity and turbulence
properties along the z— direction. Profiles are specified using n x 3 matrices in which: column 1 is a
coordinate (i.e. z), column 2 is a value, column 3 is a multiplier. The value actually adopted during
calculations is the product of the value (column 2) and the multiplier (column 3). This allows to
apply corrections to the profiles keeping trace of the original value. When needed, intermediate
values are linearly interpolated while extrapolation is performed taking the first (or last) provided
value. By extension, the same format is also adopted to describe time-variations.

4.1.1 inflowGenerationDict

The keywords appearing in inflowGenerationDict are discussed below.

cutoff: [required] during spectral synthesis only waves such that |k| Az < cutOff are consid-
ered, where Az is a typical mesh edge size calculated as the square root of the inlet patch area
divided by the total number of faces on the same patch. This eliminates from Eq. (1) high fre-
quency contributions, which would be anyway quickly dissipated. A value comprised between 0.5
and 1.0 is usually appropriate.

seeds: [required] z—coordinates of the seeds used to generate turbulence in the inhomogeneous
case [2]. Substantially, turbulent velocity fields are generated based on the properties evaluated
at seeds. Then, such turbulent fields are blended together using weighting functions. The spacing
between seeds shall be the highest possible which allows to reproduce the variations of the target
time-averaged speed and turbulence properties with sufficient accuracy. See Section 4.3 for further
details.

tProfile: [required] a time-varying multiplier used to modulate the generated field in time (both
time-averaged and fluctuating parts). It is provided using the profile format previously described.
uProfile: [required| a profile describing the time-averaged velocity, u, distribution along the local
z— direction.

sProfile: [required] a profile describing the standard deviation of the along-wind velocity compo-
nent, o,, along the local z— direction.

1Profile: [required] a profile describing the along-wind integral length scale, L,,, distribution
along the local z— direction.

kMainSeed: [required] a list of wavevectors used to generate the random fluctuations. Such values
shall be normalized in order to yield a unit along-wind integral length scale, L., = 1.0.
pMainSeed: [required] a list of amplitude vectors used to generate the turbulent fluctuations. Such
values, together with ¢MainSeed, shall be normalized in order to yield a unit standard deviation of
the along-wind turbulent velocity fluctuations, o, = 1.0.

gMainSeed: [required] a list of amplitude vectors used to generate the turbulent fluctuations. Such
values, together with pMainSeed, shall be normalized in order to yield a unit standard deviation of
the along-wind turbulent velocity fluctuations, o, = 1.0.

4.1.2 inflowGeneration.py

The routine allows to generate the inflowGenerationDict. 1t relies on two libraries profilesLib and
PRFG3Lib. In order to generate the inflowGenerationDict proceed as follows:

1. seeds must be manually defined as an array of z— coordinates;

2. uProfile is defined using, for example, the command
uProfile = profilesLib.UProfile (zBottom, zTop,nZ) .uniformProfile (1.0)
where zBottom,zTop are the lower and higher z coordinate values, nZ is the number of
subdivision of the z interval and uniformProfile indicates that a uniform-type profile of value
1.0 is targeted. In order to have a complete list of the available profiles open profilesLib.py

in correspondence of the UProfile object definition. Profiles can be easily directly edited by
the user.

3. sProfile is defined using, for example, the command
sProfile = profilesLib.SProfile (zBottom, zTop,nZ) .uniformProfile (1.0)
with the same meaning of the symbols previously presented. In order to have a complete

list of the available profiles open profilesLib.py in correspondence of the SProfile object defi-
nition. Profiles can be easily directly edited by the user.

4. 1pProfile is defined using, for example, the command
1Profile = profilesLib.LProfile (zBottom, zTop,nZ) .uniformProfile (1.0)

In order to have a complete list of the available profiles open profilesLib.py in correspon-
dence of the LProfile object definition. Profiles can be easily directly edited by the user.

5. tProfile is defined using, for example, the command

tProfile = profilesLib.TProfile (zBottom, zTop,nZ) .constantProfile ()

In order to have a complete list of the available profiles open profilesLib.py in correspon-
dence of the T'Profile object definition. Profiles can be easily directly edited by the user.

6. In the previous steps, all the data needed to characterize the time-average and turbulence
characteristics distributions have been provided. It is now necessary to extract the vectors
k;, p; and q; appearing in Eq. (1). For each seed, a set of k;, p; and q; shall be defined,
according to the local target properties.

In the present implementation, for the sake of simplicity, only one set of k;, p; and q; is
defined, indicated as the mainSeed. The mainSeed is expected to be characterized by o, = 1
and L,, = 1. All other seeds are obtained from the mainSeed by rescalings. In order to
generate the k;, p; and q; the PRFG3Lib. PRFG3Turb(turbParameters) object is used, in
which turbParameters is a dictionary with the following entries:

L: a matrix of integral scales organized as [[Lyz, Luy, Luz), [Lva, Luys Loz, [Lwa, Lwy, Lwz]]/ Lua;
Covariance: a diagonal matrix diag([o2,02,02]/02);

dEd: an integer controlling how many velocity waves shall be used to discretized the marginal
spectra. Usually already 5 leads to acceptable results. The total number of waves appearing
in Eq. (1) will increase sharply when increasing dFEd;

finalE: the velocity marginal spectra are sampled up to reaching approximately finalE'/3
of the total energy: the contribution of higher frequencies is disregarded. Usually choose 0.95.

NB 6 : In the first lines of the inflowGenerationDict a full description of the parameters and
functions used within inflowGenerationDict.py is reported within the comments.

NB 7 : Notice again that quantities appearing in L shall be normalized so that L,, = 1 and
that quantities appearing in Covariance shall be normalized so that ¢2 = 1.

NB 8 : By using only one mainSeed to obtain all others by rescalings, the turbulence anisotropy
is fixed. This means that the ratios specified in L and Covariance are the same for all seeds.

NB 9 : In the current implementation the Reynolds stress tensor is assumed to be diagonal.

NB 10 : The user can easily add additional profiles or modify existing ones. Other spectral
turbulence generation methods might be used to calculate k;, p; and q;.

4.2 Inflow correction

As already specified, the synInflow BC implements velocity corrections following the VBIC method
in order to moderate pressure fluctuations [3]. In this implementation, at the inflow patch boundary,
prevented mass fluxes are avoided setting the appropriate velocity component to zero. Such choice
is consistent with symmetry/slip/wall BC confining with the inlet patch (see Fig. 3). Such choice,
although not optimal, provides good results also when periodic BCs confine with the inlet patch
(i.e. the velocity component normal to the periodic patch is made periodic with a null value).

4.2.1 nflowCorrectionDict

The inflowCorrectionDict contains all the data needed to build the velocity corrections. Such data
must be generated using inflowCorrection.py. The only parameter which can be edited by the user
is:

corr, which is a multiplier applied to the velocity corrections (i.e. setting it to 0.0 yields an
uncorrected velocity field applied at the inflow patch, while a value 1.0 leads to a fully corrected
field).

4.2.2 inflowCorrection.py

In order to use the routine copy the folder polyMesh of your case into the folder containing inflow-
Correction.py. Change patchName to your inlet patch name and the dictName to the desired name
for the dictionary to be given in output. Run the code, copy the resulting dictionary into your case
system folder and proceed as previously indicated in Section 2.1.

NB 11 : The polyMesh must be in ASCII format, the binary format is not supported.

NB 12 : Velocity corrections are calculated in a local reference system, which might be different
from the one used to generate the synthetic flow. Such local reference system is provided in
output when running the routine, but it is chosen in a fully automatic way and the user neither
has nor needs control over it.

4.3 Tips and tricks

Here are some useful tips and tricks:

1. it is always a good idea to recompile syniInflowLib.so for your system and OpenFOAM version,
even if the provided compiled library does not rise errors;

2. seeds shall be as few as possible keeping the distance between them as large as possible,
in order to have slowly varying weighting functions. This, on the other hand, decreases
the accuracy of the obtained profiles. It is necessary to compromise between such opposing
necessities. The distance between seeds is an upper limit to the obtainable vertical integral
length scales for all velocity components. The time-averaged field is interpolated directly
from the profiles not using seeds, so that its accuracy does not depend on the number of seeds
or location;

3. just before the first iteration some checks are performed comparing the data in the inflow-
CorrectionDict and the current mesh. Check if such controls are passed. If not, maybe your
inflowCorrectionDict has not been generated for the present mesh;

4. at each iteration the value of the time multiplier is reported. Such value is the one obtained
from the tProfiles;

5. tProfiles are very useful for initializing your simulation, gradually increasing velocity, so
avoiding the need to select very small time steps during initialization;

10

6. not specifying the inflowCorrectionDict in the BC setup for the U field in the ”0” folder
or setting corr equal to 0 in the inflowCorrectionDict might have similar results, but is it
substantially different (due to the different implementations). If your inflowCorrectionDict
is not generated for your current mesh, suppress velocity corrections exclusively eliminating
inflowCorrectionDict form the U field boundary values specifications in your case ”0” folder.

7. if the purpose of your analysis is not to measure pressures, it might be preferable to set corr to
a value of about 0.5 to obtain the best match between the targeterd and the profiles actually
found in the simulation (see Section 5.2). Pressure fluctuations usually decay considerably at
a distance approximately equal to two integral length scales downstream the inflow patch;

8. when calculating velocity corrections, it is fundamental that no flow reversal happens at the
inflow boundary. This is obtained automatically setting minimal values to the along wind
velocity component;

9. the inflow patch shall be large enough with respect to the relevant integral length scales;

10. profiles (time-averaged velocity and turbulence properties) might evolve downstream the in-
flow patch, which is a typical problem in ABL flows. This is only partially related to the
inflow generation procedure and selected target values. Indeed, if the correct roughness is not
applied at the ground patch, the same behaviour is observed in nature and in wind tunnel
tests. Also the dissipation operated by the grid might play an important role;

11. the names of inflowGenerationDict and inflowCorrectionDict can be changed arbitrarily,
which is useful in case multiple inlets with different characteristics are defined. Just point to
the correct ones when setting the BC for the velocity field.

5 Examples

To run the examples, first run blockMesh and than the solver, e.g. pisoFoam. If you make any change
to the mesh or for some reasons preliminary checks are not passed update inflowCorrectionDict
following the instructions above.

5.1 SimpleInflow

The first example provided is called Simplelnflow, derived from the examples shown in [3]. Assum-
ing time-average velocity equal to 1.0, we reduce the summation appearing in Eq. (1) to a single
term such that

k=[1,1,17; p = [0.1,0.05,0.05]%; q=[0,0,0]". (3)

Such inflow, denoted as Original in the following, is not divergence-free as k and p are not orthog-
onal, so that spurious pressure fluctuations and a corresponding modification of the velocity field
are to be expected if no corrections are applied. Then, we modify the inflow so that

k=[1,-1,-1]%; p = [0.1,0.05,0.05)7; q=[0,0,0]". (4)

Such inflow, denoted as Div-free in the following, is divergence-free (and fulfills linear convection
due to the presence of x* in Eq. 1). As a result, it is expected to lead to major spurious pressure

11

fluctuations only due to BCs mismatches. For both inflows, pressure fluctuations can be mitigated
relying on VBIC.

Figure 4 reports the pressure coeflicient C), = p/q with ¢ kinetic pressure based on the time-
averaged velocity. Pressure fluctuations measured for the corrected case are one order of magnitude
smaller than the uncorrected cases, as shown also by the minimum and maximum values reported
on top of each case.

[-0.14,0.14] [-0.14,0.14] [-0.010,0.016]

. Cp
oy

- I 0.1

0.0
| -0.1

Figure 4: The C), distribution at t = 3 for SimpleInflow: (a) Original, (b) Div-free, (c) Original
corrected. Minimum and maximum values reported on top of each case.

(a) (b) ()

5.2 ABLInflow

This example provides on overview of how it is possible to generate an Atmospheric Boundary
Layer, ABL, inflow condition with SynInflow. Firstly, we generate the inflowGenerationDict using
inflowGeneration.py, targeting an Eurocode Category III profile in full-scale. We select a base
velocity equal to 20 m/s. All the parameters used in the inflow generation procedure are reported
at the beginning of the inflowGenerationDict. In order to analyse the obtained results we run the
case for 1000 s and disregard the first 100 s to avoid initialization. In analysing the results, it shall
be considered that the example is illustrative and the adopted mesh is relatively coarse, so that
variations of the results might occur when adopting finer meshes and longer simulation times.

We start by analyzing the results obtained at Profile 0, corresponding to a central position just
downstream the inflow patch. Remember that PRFG? can only be approximately divergence-free
in the inhomogeneous case for cases characterized by slowly varying properties.

We firstly consider the case in which VBIC is disabled, i.e. corr = 0 in the inflowCorrectionDict.
An overview of the obtained results is reported in Fig. 5, showing a good agreement between the
targeted and the obtained values. Notice that the shape of the I, profile is modified close to the
ground due to its impermeability, which damps out vertical velocity components: such aspect is
not taken into account by the targeted profiles.

12

Time-averged Turbulence intensity

300 4 — Profile 0 —— Ilu Profile 0
—-— EC —— Iv Profile 0
250 = Iw Profile 0
== luTarget
200 —— IvTarget
—— Iw Target
)
E 150
s
100
50
ol e T e e e
] 5 10 15 20 25 30 35 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
) .. z[m z
Time-histo&s at 100 m Spectra 100 m
40
30
E 20 T
N —v
N —_
5 10
o
1073 § == uTarget
—— vTarget
-10 == w Target
104
200 400 600 800 1000 10-2 10-1 100
t[s] Fq [Hz)

Figure 5: Overview of the results obtained for the ABLInflow in terms of velocity field without
VBIC.

Then, we consider the same case enabling VBIC i.e. corr = 1 in the inflowCorrectionDict. We
see that, overall, good results are still achieved, although an increase of turbulence intensity for the
v velocity component is observed, so that the I, turbulence intensity is now similar to the I,, one.
Notice that the I, profile is actually identical to the uncorrected case, as the currect implementation
of VBIC applies corrections only to transversal velocity components.

Time-averged Turbulence intensity
300 1 — Profile 0 — luProfile 0
-= EC —— Iv Profile 0
250 —— Iw Profile 0
== luTarget
200 —— IvTarget
== Iw Target
T
E 150
s
100
50
ol e T e T T —————— e
0 5 10 15 20 25 30 35 0.05 0.10 0.15 0.20 0.25 030 0.35 0.40 045
X Ly zim
Time-histoH@s at 100 m
40
30
@ 20 —
E ¥ %
= —V E
s 104 — w E
El
o
103 4 == uTarget
10 —— vTarget
—— w Target
200 400 600 800 1000 10-2 10-1 100
tis] Fq [Hz]

Figure 6: Overview of the results obtained for the ABLInflow in terms of velocity field with VBIC.

13

We now consider the evolution of the velocity field in the along-wind direction. Figure 7
provides an overview of the turbulence intensity and pressure fluctuations evolution in the along
wind directions, measured at an height of 100 m. The following aspects are noticed:

e as expected pressure fluctuations start form a much lower values when adopting VBIC cor-
rections;

e pressure fluctuations observed when using VBIC quickly adjust to a constant value typical of
non spurious pressure fluctuations;

e when no corrections are adopted, spurious pressure fluctuations decrease rapidly and arrive

to the expected value at a distance approximately equal to 2L, where L is comparable to the
integral length scales [2];

e when using VBIC, turbulence intensity has a monotonic trend, in this case we observe a

decay due to mesh dissipation and an increase of I, due to energy transfer from the other
components;

e in this case VBIC corrections are acting mainly on the v velocity component, increasing the
I, value since the inflow patch;

e conversely, when VBIC corrections are not used, the along wind evolution is not monotonic,
with I, sharply increasing just downstream the inflow patch.

Overall, it shall be thus considered that whenever the inflow does not kate into account (lin-
earized) Navier-Stokes equations and BCs, pressure fluctuations and an adjustment of the velocity
field must be always expected. VBIC allows to strongly moderate the insurgence of pressure fluc-
tuations keeping the along-wind turbulence intensity unchanged. If corrections are not applied,

downstream the inflow patch, changes will anyway be applied to the velocity field, generating in
addition strong spurious pressure fluctuations.

Turbulence intensity evolution
0.200

Cp' evolution

— cp' Corr
—= Cp* NoCorr

0175

0.150

0.125

Cp'[-]

0.075 \

N\,
— luCorr ~
— v Corr 0.06 e
— Iw Corr

~
~
0.025 4 == IuNoCorr \ S
== IvNoCorr —=
== Iw NoCorr

0 100 200 300 400

Figure 7: Evolution of the synthetic flow in the along wind direction.

6 Version history

v1.0 - September 1, 2022 - First release.

14

References

[1] L Patruno and M Ricci. A systematic approach to the generation of synthetic turbulence using
spectral methods. Computer Methods in Applied Mechanics and Engineering, 340:881-904,
2018.

[2] M Bervida, L Patruno, S Stani¢, and S de Miranda. Synthetic generation of the atmospheric
boundary layer for wind loading assessment using spectral methods. Journal of Wind Engi-
neering and Industrial Aerodynamics, 196:104040, 2020.

[3] L Patruno and S de Miranda. Unsteady inflow conditions: A variationally based solution to the
insurgence of pressure fluctuations. Computer Methods in Applied Mechanics and Engineering,
363:112894, 2020.

15

