PVJ:

a pressure-velocity-jump boundary condition for OpenFOAM

Version 1.0

PAVA
gus

:

July 1, 2024

Contents

1

About PVJ] 3
1.1 Main features L 3
1.2 Licensing and compatibility 3
Getting started 4
2.1 Set up your case e 4
2.2 Compiling GOPVJ.s0 6
Theoretical background 6
Usage 7
4.1 Reference system 8
4.2 PVJDict e e e 8
4.3 PVJPreprocessing.py o v v v v v i vt e e e e e e e 9
4.4 Tipsand tricks 10
Example 10
Version history 12

1 About PVJ

Thank you for your interest in PVJ. PVJ provides a modified cyclic boundary condition able to
represent the presence of permeable surfaces, taking into account pressure-jumps as well as eventual
velocity deflections. It is developed at the Laboratory of Computational Mechanics of University
of Bologna, primarily targeting Computational Wind Engineering applications. For further info
visit the website https://site.unibo.it/cwe-lamc/en and do not hesitate to write us in case
you have any doubt.

1.1 Main features

The CFD modelling of permeable surfaces, characterized by pores which are remarkably smaller
than the overall size of the immersed body, is extremely challenging, due to the inherent multi-
scale nature of the problem. The PVJ boundary condition is a generalization of the well-known
pressure-jump approach, in which forces tangential to the surface, responsible for the deflection
of the velocity field, are also considered. Additionally, PV.J allows for a more tight control of
the aerodynamic forces dependency with the angle of attack, with respect to standard approaches.
PV/J is suitable for modelling a wide range of permeable surfaces, from perforated sheets to lamellar
screens, see Fig. 1. The model is described in [1].

To0 T 2,48 a4 5 b6 7 8 & 6 7 8

EM,8 = —45° PV],0 = —45°

Figure 1: Example of use of the PVJ boundary condition to model a ground mounted lamellar
barrier with different lamellae inclinations, . Comparison between explicit modelling of the geom-
etry, EM and PVJ (adapted from [1]).

1.2 Licensing and compatibility

PVJ isreleased under the GNU GENERAL PUBLIC LICENSE Version 3. The software is provided
7as is”, without warranty of any kind, express or implied, including but not limited to the warranties
of merchantability, fitness for a particular purpose and non infringement. In no event shall the
authors or copyright holders be liable for any claim, damages or other liability, whether in an

action of contract, tort or otherwise, arising from, out of or in connection with the software or the
use or other dealings in the software.

The present implementation has been developed within OpenFOAM® v2112 and it is expected
to work also for subsequent ESI-OpenCFD releases, while adaptation to the OpenFOAM Founda-
tion version requires modifications of the source code.

2 Getting started

2.1 Set up your case

Setting up your PVJ BC usually requires three simple steps, reported in Fig. 2.

Copy/compile "libPV]).so” to “system”

Generate PVJDict

Set the boundary conditions

Figure 2: Steps needed to use the PVJ boundary condition.

Firstly, copy the libPVJ.so into the case main folder. If you are using it for the first time,
you find it in the provided examples or in the provided CodeOF folder. It is anyway advisable to
recompile the code for your system following the instructions provided in Section 2.2, it takes just
a few seconds. Then, add the following line at the beginning of your controlDict:

libs("./1ibPVJ.so").

Once libPVJ.so is in your case main folder and you added it in the controlDict, run PV.JPrepro-
cess.py to generate the PV.JDict, as described in Sec. 4.3. Finally, in the p and U files in the 0
folder, respectively select the PJ and V.J boundary conditions as shown below (left for PJ and
right for VJ). In this case, patchA and patchB are here the cyclic patches pair to which PVJ is
applied.

patcha { patcha {

type PJ; type VJ;

patchType cyclic; patchType cyclic;
PVJDict PVJDict; PVvJDict PVJDict;
jump uniform (0); Jump uniform (0 0 0);
point (100 0 0); point (100 0 0);

tld (0 1 0); tld (0 1 0);

} }

patchB { patchB {

type PJ; type VJ;

patchType cyclic; patchType cyclic;
PVJDict PVJDict; PVJDict PVJDict;

jump uniform (0); Jump uniform (0 0 0);
point (100 0 0); point (100 0 0);

tld (0 1 0); tld (0 1 0);

} }

The meaning of the keywords is detailed below:

type: [required] select PJ for the pressure boundary condition and VJ for the velocity bound-
ary conditions;

patchType: [required| always keep cyclic;

PVJIDict: [required| the name of the PV.JDict dictionary file that contains the data for calculat-
ing the pressure and velocity jumps based on the aerodynamic characterization of the permeable
surface. The dictionary must be put in the system folder and it is usually generated using PV.JPre-
processing.py as described in Sec. 4.2;

jump: [required] initial value of the velocity/pressure jump, use default values as reported above;
point: [required]| coordinates of a point located along the positive normal direction of the local
reference system. Further details are provided in Sec. 4.1;

tld: [required] a vector identifying an approximate first tangent vector of the local reference sys-
tem. Further details are provided in Sec. 4.1;

NB 1 : For each PVJ patches pair, a file reporting at each time step the forces acting on the
permeable surface is created. The file is located in the postProcessing \ PVJ folder.

NB 2 : ti1d: identifies an approximate tangent vector, the actual one is calculated in order to
actually lay on the tangent plane of the permeable surface.

NB 3 : For cases involving more than one permeable surface typology, it is possible to use
more than one PVJDict, all to be placed in the system folder. The name can be changed
freely and it is here assumed to be PVJDict for the sake of simplicity.

NB 4 : In numerous cases, the aerodynamic properties to be considered traversing the barrier
in one direction or the opposite one are the same, so that the point location does not have
effects. In all other cases, such parameter must be correctly chosen. Examples are provided

in Fig. 3.

!
]
!
v
]
!
1

Figure 3: Expected effects induced by the crossing direction (blue and red).

2.2 Compiling lzbPVJ.so
In order to compile libPVJ.so for your system, open a terminal and go to the provided CodeOF
folder. Then execute the command:

wmake libso

Then copy the newly created libPV.J.so into the case main folder.

3 Theoretical background

Figure 4 (a) reports a sketch of an elementary portion of a permeable surface immersed in a flow
characterized by velocity w and impinging with incidence angle a with respect to the barrier normal
direction, n. We here assume a two-dimensional case, being the three dimensional extension of the
present formulation detailed in Sec. 4.1.

For an incompressible fluid, mass conservation reads

Uni — Upo = 0, (1)

being u,; the velocity component along n measured at ¢, while momentum conservation in the
n—direction requires

p(unzum - unouno) + Pi — Po — fn = 0. (2)
Substituting Eq. (1) in Eq. (2), we obtain
Do — Pi = — fn, (3)

where f, is the aerodynamic force for unit area acting on the permeable surface projected along
the normal direction. The equation shows that the pressure-jump measured at the two sides of the
barrier is equal, and opposite, to the force acting on the barrier in the normal direction.
Analogously, momentum conservation in the t—direction requires

p(utiuni - utouno) — fi=0. (4)

Control
volume I

o

n

1
i
(I Middle
Solid EQES surface
element :Q_{:
(a) (b)

Figure 4: Sketch and main quantities involved in the PVJ formulation: (a) general elementary
permeable surface element and (b) lamellar screen (adapted from [1]).

where the subscript ¢ denotes projection along the tangential direction. Substituting Eq. (1) in
Eq. (4), we obtain
PUni (Ui — uto) — fr = 0, (5)
i (©)
PUns

which allows to calculate the jump of the tangential velocity component based on the exchanged
forces and the mass flux across the permeable barrier.

Then, for all inflow angles, a, we denote the aforementioned force as f(a) = [fu(a), fi(a)]’. By
defining the velocity versor as @@ = u/|u|, the aerodynamic forces are assumed to be expressed as:

Fle) = soluflin[e(e), @

where 7 is a coefficient and ¢(«) are expressed using a Fourier series as

so that

Uto — Uty = —

(8)

in which by;, by; with ¢ = 0, 1... are model parameters which can be obtained from fitting of wind
tunnel/CFD data or, for some limit cases, analytically [1].

cla) = cn | | bno 4 buicos(a) + bpasin(a) + b3 cos(2¢r) + bpa sin(2av)...
Sl e || b+ by cos(@) + b sin(a) + bys cos(2ar) + by sin(2ar)... |’

4 Usage

As already stated, using the PVJ boundary condition requires to provide a dictionary which con-
tains all the data needed to calculate the pressure and velocity jumps, here named PVJDict. Such
dictionary is usually automatically generated relying on PVJPrepocessing.py, which has been de-
veloped using Python 3.9. Once generated, such dictionary must be placed in the case system
folder.

4.1 Reference system

Before proceeding it is useful to clarify that two kind of reference systems can be used in order to
obtain from the two-dimensional formulation reported in Sec. 3 a three-dimensional one.

In particular, two options are available and Fig. 5 provides a sketch of the differences between
them. The first one, named locRef is useful for cases in which porosity is essentially derived by
the extrusion of a two-dimensional section (e.g. lamellar screens), while the second one, named
velRef, is useful for cases showing cylindrical symmetry (isotropy in the tangential directions, e.g.
usual perforated porous screens).

For 1ocref, the positive normal direction is firstly chosen, ensuring that it points in the direction
of the point mentioned in Sec. 2.1. Then, t; is built in order to lay on the tangent plane and
be oriented as closely as possible the provided tid (see Sec. 2.1). Then t2 is obtained by vector
product. In this case the velocity component acting along ts is disregarded (i.e. no axial flow
effects are considered).

For velref, the positive normal direction is firstly chosen, ensuring that it points in the direction
of the point mentioned in Sec. 2.1. Then, t; is built in order to lay along the local velocity tangential
component. In this case the provided tid is ignored. Finally, ¢ is obtained by vector product.

In both cases, tangential forces are always assumed to lay along t1, which represents in three
dimensions the analogous of £ used in Sec. 3 for the two-dimensional case.

locRef velRef
u
ty t
Br P dadan P
L1d [°] Z /]
ty t: i, *n

Figure 5: Possible reference systems adopted by PV.J.

4.2 PVJD:ict

The keywords appearing in PV.JDict are discussed below.

pvj.ref: [required] choosing the kind of reference system to be used, see Sec. 4.1. Possible choices
are locRef or velRef, as detailed in Sec. 4.1.

pvj.gamma: [required] the coefficient v appearing in Eq. (7).

pvjbn: [required] the Fourier coefficients appearing in the calculation of ¢, in Eq. (8), following
the format detailed below.

pvibtl: [required]| the Fourier coefficients appearing in the calculation of ¢; in Eq. (8), following
the format detailed below.

The Fourier coefficients are stored in two-dimensional arrays for which each line contains in the
order: a flag to identify cosinus (0) or sinus (1), the harmonic number, the Fourier coefficient. As
an example, the line [0,2,0.3] identifies 0.3 cos(2«) while [1,3,0.2] identifies 0.2 sin(3c).

4.3 PVJPreprocessing.py

The routine allows to generate the PVJDict, relying on the library PVJLib.py. The first lines of
the code shall be modified by the user in agreement with the following. Then the code is run,
generating the PV.JDict to be copied in the system folder. Only the following variables shell be
edited before running:

outDictionaryName: name of the produced output file, generally PV.JDict.

inputDataFile: path to a text file collecting data to be compared/used (see below) to cali-
brate/compare the Fourier expansion appearing in Eq. (8). The file shall have three columns
representing: approaching flow angle, force in the n direction and force in the t; direction. At-
tention, forces shall be intended as normalized by the fluid density, f(«)/p. Do not make them
non-dimensional using the reference kinetic pressure.

u: undisturbed upstream velocity for the data stored in inputDataFile.

area: area of the permeable surface for the data stored in inputpataFile. This is intended as gross
area of the middle surface (see Fig. 4).

pSurfaceDict: python dictionary collecting data needed to generate the PV.JDict. There are three
approaches available in order to characterize the permeable surface: fromData, fullyDeflective and
fromPorosity. Depending on the selected approach, the dictionary shall be filled with different
keywords/values as follows [1]:

1. fromData estimates the Fourier coefficients appearing in Eq. (8) fitting the forces exchanged
by the permeable surface when impinged from different angles of attack, measured in wind tun-
nel tests or numerical simulations (usually periodic conditions). The required keywords/values
are:
approach: value must be set to ’fromData’.
order: maximum order of the Fourier series expansion of Eq. (8).
data: data used to calibrate the Fourier coefficients.
ref: choice regarding the reference system as from Sec. 4.1.

2. fullyDeflective estimates the Fourier coefficients appearing in Eq. (8) assuming that the flow
will be completely deflected and forced to have a predefined outgoing angle. It can be used
to approximate densely spaced lamellar screens, for which the lamellae tend to force the flow
direction. The required keywords/values are:
approach: value must be set to fullyDeflective.
theta: deflection angle with respect to the normal, see Fig. 4.

3. fromPorosity estimates the Fourier coefficients appearing in Eq. (8) assuming that only forces
along n are produced and calculating the pressure drop according to [2]. It can be used to
approximate perforated plates. The required keywords/values are:

approach: value must be set to fromPorosity.
beta: permeable surface porosity (ranging from 0 to 1).
ref: choice regarding the reference system as from Sec. 4.1.

NB 5 : For the fromData approach, forces imported from the inputDataFile should be nor-
malized by the fluid density, p, i.e. Af(a)/p, being A the gross area of the middle surface.
Notice that these are forces per unit density not normalized by the reference area (such last
normalization is performed automatically).

NB 6 : When using fromData, the value of pvj gamma is forced to be 1, being the parameter
actually redundant.

NB 7 : The folder ”Data” collects examples of aerodynamic forces at different attack an-
gles measured in numerical simulations. In particular, lamellae_theta_45.txt collects results
(two-dimensional URANS) for a lamellar permeable surface oriented at 6§ = 45°, while per-
forated_beta_Op5.txt collects results for a two-dimensional perforated surface with porosity
B =0.5. In both cases, U = 10 and area = 0.6.

4.4 Tips and tricks

Here are some useful tips and tricks:

1. Porous surfaces characterized by very low porosity lead to strong pressure-jumps which might
render the simulation unstable. Usually it is difficult to set up stable computations when
porosity is lower than 10%-15%;

2. The fact that tid is provided but the actual t; is calculated ensuring that it lies on the
tangent plane, often allows to provide a unique tid even when ¢; varies from point to point
because the permeable surface is curved;

3. It is possible to have more than one PVJ patches pairs and use a single PV.JDict. This
is useful in case the same porous surface type is present in more than one instance or it is
curved.

5 Example

The provided example considers the computational domain reported in Fig. 6. The upper and
lower patches are of periodic type while PVJ is applied at a cyclic patch which splits vertically
the domain in two parts, so representing the presence of a permeable surface which extend over
the whole domain cross-section. We assume such permeable surface to be a closely spaced lamellar
screen, so we decide to model it as a fully deflective permeable surface. The lamellae are assume
to be oriented so that 8 = 45°.

10

Pe(iodic Real

PVJ geometry
Inle\t ~PVJ
/Outlet
T \Middle
Periodic Lamellae surface

Figure 6: The computational domain and the lamellar screen with 6 = 45°.

A comparison between the aerodynamic forces predicted by the fully deflective permeable surface
and the results of a URANS simulation, in which numerous lamellae have been explicitly modelled,
is reported in Fig. 8.

14
-2 4
_3
-4 P (K
0 50 100 150 200 250 300 350
al’1

Figure 7: Aerodynamic forces acting on a lamellar screen with 8 = 45°.

As it can be seen, accuracy is not high, due to the fact that the actual deflection angle is not
aligned with the lamellae, due to flow detachments (see [1]). However, trends are correctly captured
and the approach often suffices in order to have a rough representation of the permeable surface
presence. If aerodynamic forces at each angle of attack are evaluated by means of wind tunnel tests
or numerical simulations, it is always possible to calibrate the PVJ form data.

11

12e+00

llp

-2.0e-01

Figure 8: Flow field obtained for the lamellar screen with § = 45°: streamlines and pressure contour
(cell values).

As it can be seen, in correspondence of the PV.J patch the flow is correctly deflected at 45° and
an overpressure upstream of it is produced, as expected.
6 Version history

v1.0 - February 01, 2023 - First release.

References

[1] Mao Xu, Luca Patruno, and Stefano de Miranda. A pressure-velocity jump approach for the cfd
modelling of permeable surfaces. Journal of Wind Engineering and Industrial Aerodynamics,
233:105317, 2023.

[2] Mao Xu, Luca Patruno, Yuan-Lung Lo, and Stefano de Miranda. On the use of the pressure
jump approach for the simulation of separated external flows around porous structures: A
forward facing step. Journal of Wind Engineering and Industrial Aerodynamics, 207:104377,
2020.

12

