1. HARDY SPACES ON D AND R%

1.1. Basic definitions. Given 1 < p < oo we define

27 %
HP(D) := {f € Hol(D) : || fllazm) = % sup (/0 |f(rei‘9)|d9> < oo} ,

0<r<1

and

0<y<oo

HP(R%) == {f € Hol(R%) : ||fHH2(IR3r) = sup (/Rf(:chiy)mx)p < oo}-

For p = oo we just consider bounded holomorphic functions in respective domains. Note that in Ri one has

to consider all values of y > 0, case in point f(z) = eili . These classes are almost images of each other
(z+i)P

w.r.t. a conformal map D — Rﬁ_, however, say, non-zero constants do not belong to H? (Ri) for finite p. We

consider both these spaces simultaneously, using one of them where it is more convenient.

1.2. Poisson kernel representation. Assume that f = a,z" is analytic in D, continuous up to the
boundary. Then, letting u := Rf, we have

u(rew) = ZAnrmlei"e, 0<r<1,0<0<2m,

nez
with
An—lan n>0
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Anzian, n <0

Hence for r < 1 one has

) 1 [27 . )
u(re'®) = g/o u(e®) Z rinlein(®=9) qg.

nez
and

: 1—172
Zr‘”leme" = , 0<r<1,0<6y<2m,
1+ 72 —2rcosby
neN
which is the Poisson kernel for the unit disk . One can look at this representation in a different way.
Assume u is harmonic on D, continuous up to the boundary, then

2m
u(0) ! /0 u(e™) dt

T or

by MVP. Now fix a point zy = re’%, 0 < r < 1, 0 < fy < 2w, and consider the Mébius transformation

T = T4, that moves 2y to 0, so that
z— z
(z) = ——

T 1-—7%z
Remark. Mobius transformations are conformal self-maps of the unit disc, they have the following form

Twp(2) = e“’%, weD, §el0,2n).

Clearly 7(9D) = D and u(7~1(+)) is again a harmonic function in D, continuous up to the boundary. Hence

1 1 [ 1—1r2

u(zp) = U(T_I(O)) = %/0 7Tu(T_l(eit))alt =5 ; u(e’e) T~ 2rcos(d —0g) £ 12 do

by change of variables. In other words,

u(re™®) = (¢ * P;) (6o)



2

for p(0) := u(e?) and
1—1r2

PO =
() 1—2rcosf 4+ r2

0<r<1,0<6<2m.

On the other hand,
eiG + ,},.eieo
Pr(9 - 90) = %ei‘g — ’/‘€i00 3
so for any continuous (and 27-periodic) function ¢ one has that u(re?) := (p % P,) (6y) defines a function,
harmonic in the unit disc and continuous up to the boundary.

Now if we consider the map w : D +— Ri with

we get that (after another change of variables)
Uw) = / U@)P,(x—t)dt, w=z+iycR,
R

—2
if U is harmonic in R% and continuous in R, U {oco} with

Iy
P(t) = ——"— 0, teR.
y() 7Tt2+y2, y >0, €
As before, since
1 1
Pz —1t)= -Q———,
T t—(x+1iy)

we see that U(xz + iy) := (¢ * Py) (z) defines a function which is harmonic in the upper halfplane and
continuous up to the boundary (plus {oc0}), if ¢ € Co(R).

We actually can say more than that. Assume that ¢ € LP(R) for some 1 < p < oo, or p is a finite measure
du(t)
1it2
upper halfplane. Indeed, for y > 0,p fixed the Poisson kernel P, (along with its derivatives) is in LI(R),

where %—&—% = 1, and is smooth in each variable, so by general theory one can differentiate under the integral.

on R (or a positive measure on R with f]R < 00), then, still, ¢ * P, defines a harmonic function on the

Theorem 1.1 Assume that u is a harmonic function in the upper halfspace Ri. Then

o There exists a function p € LP, 1 < p < oo such that
u(@,y) = (p*Py)(z), y>0, zeR,
if and only if

(1) sup [|u(-, y)l| e ) < oo
y>0

In that case one has

(2) lim |u(-, y) = @llLrr) =0
y—0
for1l < p< oo, and
3) i | [ wtt.nig(ora— [ oot dt] 0, geL'(R).
y—0 R R

for p= 0.
o There exists a finite measure p on R such that

u(z,y) = (pxFy)(x), y>0,zeR,
if and only if

@ sup [[u(, y) L1 @) < oo
y>0



In that case one has

(5) lim

y—0

[t~ [ a0 du(t)‘ —0, geC®).
R R

o The function u is positive if and only if there exists a positive measure p on R and a non-negative
constant ¢ such that

(6) u(z,y) =cy+ (px* Py)(z), y>0, vk,
with
du(t
™) / ) < oo

Proof. The ”only if” part.
We already know that the convolution ¢ * P, or p* P, defines a harmonic function on the upper half-plane.
To estimate norms one only has to apply Minkowski’s inequality to the convolution representation,

1
(/ wa|p<x>da:) <llellm, 1<p<oo,
R

and

[ s pl@ds < [ laul.
R R

For p = oo it follows from the fact that P, > 0 and [, P,(t)dt =1, y > 0.

It remains to show that harmonic extensions to Ri converge to ¢ (re. u) in appropriate norms. Observe
first that shifts are continuous in LP, 1 < p < oo (but not at the ends of the scale — hence slightly different
convergence there!). In other words,

lim [[o(z =) = o()llr@ =0, ¢ € LP(R).

x—0

It follows that

lo* Py — ollom) < / Py<t>||w<-—t>—gonmmt:( T / )Py(t)llw(-—t)—@llm(mdt
R <Yy [t]>y

by Minkowski’s inequality. The first term tends to zero by continuity of shifts, and the second one by the
estimate on the tail of Poisson kernel. In addition, if ¢ is uniformly continuous on R, then its shifts are
continuous in L°°-norm, and arguing as above we arrive to the uniform convergence of ¢ * P, to ¢. The
properties (3) and (5) follow by duality. The ”only if” part of the third point is obvious.

The ’if’ part

We first need the following lemma.

Lemma 1 Assume u is bounded harmonic function in the upper halfplane and is continuous up to the
boundary (so no condition at infinity!). Then

(e + iy) = /pr(x —tut)dt = (ux P)(z), zER, y>0.
Proof. Put
Uz +iy) = u(zr +iy) — (u* Py)(x).

Since u is continuous in Ki, we clearly have that u * P, — u pointwise. In particular, U is bounded and
harmonic in ]R%r, continuous up to the boundary, and U = 0 on R. Reflecting U on R? we see that the
resulting function is bounded and harmonic in R?, hence it is constant. m Assume now that, say, (1) holds,
and fix some y, > 0. By mean value property and Cauchy-Schwartz one has

lu(z + iy)| < Cly) sup luC9)llLe ), = €R,
Y
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for some C(y). Lemma 1 implies that

w@+i(y +yn)) = (u(- yn) * Py)(x), y>0,qeR.

The sequence u(-, y,) is bounded in LP(R), so by Banach-Alaoglu it has a weak limit. Since Poisson kernels
are in respective L?, we obtain the existence of ¢ = lim,, o u(-,yn). The same works for p = 1 and weak
convergence of measures. The third point is proven by going to the unit disc (where it follows from the
second point) by a conformal map, and then going back. m

Theorem 1.2 (F. and M. Riesz, 1917) Assume that p is a singular finite measure on 0D such that

27
/ e "du(t) =0, n<O.
0
Then pt=0
1.3. Blaschke products.

Theorem 1.3 Assume {2,152 is a sequence of points in the unit disc. Then the Blaschke product

—Zn 2 —
(8) H |2n| 1 —Z,2

converges uniformly on compact subsets of D to a nonzero holomorphic function in D if and only if

oo

(9) > (1= |za]) < oo

n=1

In this case the zeros of B are precisely the points z, with respective multiplicity.

Theorem 1.4 (F. Riesz) Assume f € HP(D) with 1 < p < 0o and f is not identically zero. Let {z,}52, be
the sequence of zeros of f (w.r.t. their multiplicity). Then

(10) Z(l — |zn|) < o0,

neN

and if B is the Blaschke product with zeros {z,}, then % belongs to HP(D), has no zeros in D, and

!

= £l e my-
D)



