1. Hardy spaces on \mathbb{D} and \mathbb{R}^2_{\perp}

1.1. **Basic definitions.** Given $1 \le p < \infty$ we define

$$H^{p}(\mathbb{D}) := \left\{ f \in Hol(\mathbb{D}) : \|f\|_{H^{2}(\mathbb{D})} := \frac{1}{2\pi} \sup_{0 < r < 1} \left(\int_{0}^{2\pi} |f(re^{i\theta})| \, d\theta \right)^{\frac{1}{p}} < \infty \right\},$$

and

$$H^{p}(\mathbb{R}^{2}_{+}) := \left\{ f \in Hol(\mathbb{R}^{2}_{+}) : \|f\|_{H^{2}(\mathbb{R}^{2}_{+})} := \sup_{0 < y < \infty} \left(\int_{\mathbb{R}} |f(x + iy)| \, dx \right)^{\frac{1}{p}} < \infty \right\}.$$

For $p=\infty$ we just consider bounded holomorphic functions in respective domains. Note that in \mathbb{R}^2_+ one has to consider all values of y>0, case in point $f(z)=\frac{e^{-i\frac{z}{p}}}{(z+i)^{\frac{2}{p}}}$. These classes are almost images of each other w.r.t. a conformal map $\mathbb{D}\mapsto\mathbb{R}^2_+$, however, say, non-zero constants do not belong to $H^p(\mathbb{R}^2_+)$ for finite p. We consider both these spaces simultaneously, using one of them where it is more convenient.

1.2. **Poisson kernel representation.** Assume that $f = \sum_{n=0}^{\infty} a_n z^n$ is analytic in \mathbb{D} , continuous up to the boundary. Then, letting $u := \Re f$, we have

$$u(re^{i\theta}) = \sum_{n \in \mathbb{Z}} A_n r^{|n|} e^{in\theta}, \quad 0 \le r < 1, \ 0 \le \theta < 2\pi,$$

with

$$A_n = \frac{1}{2}a_n, \quad n > 0$$

$$A_0 = \Re a_0$$

$$A_n = \frac{1}{2}\overline{a}_n, \quad n < 0.$$

Hence for r < 1 one has

$$u(re^{i\theta_0}) = \frac{1}{2\pi} \int_0^{2\pi} u(e^{i\theta}) \sum_{n \in \mathbb{Z}} r^{|n|} e^{in(\theta_0 - \theta)} d\theta,$$

and

$$\sum_{n \in \mathbb{N}} r^{|n|} e^{in\theta_0} = \frac{1 - r^2}{1 + r^2 - 2r\cos\theta_0}, \quad 0 \le r < 1, \ 0 \le \theta_0 < 2\pi,$$

which is the *Poisson kernel* for the unit disk \mathbb{D} . One can look at this representation in a different way. Assume u is harmonic on \mathbb{D} , continuous up to the boundary, then

$$u(0) = \frac{1}{2\pi} \int_0^{2\pi} u(e^{it}) dt$$

by MVP. Now fix a point $z_0 = re^{i\theta_0}$, $0 \le r < 1$, $0 \le \theta_0 < 2\pi$, and consider the Möbius transformation $\tau = \tau_{z_0}$ that moves z_0 to 0, so that

$$\tau(z) = \frac{z - z_0}{1 - \overline{z_0}z}.$$

Remark. Möbius transformations are conformal self-maps of the unit disc, they have the following form

$$\tau_{w,\theta}(z) = e^{i\theta} \frac{z - w}{1 - \overline{w}z}, \quad w \in \mathbb{D}, \ \theta \in [0, 2\pi).$$

Clearly $\tau(\partial \mathbb{D}) = \mathbb{D}$ and $u(\tau^{-1}(\cdot))$ is again a harmonic function in \mathbb{D} , continuous up to the boundary. Hence

$$u(z_0) = u(\tau^{-1}(0)) = \frac{1}{2\pi} \int_0^{2\pi} u(\tau^{-1}(e^{it})) dt = \frac{1}{2\pi} \int_0^{2\pi} u(e^{i\theta}) \frac{1 - r^2}{1 - 2r\cos(\theta - \theta_0) + r^2} d\theta$$

by change of variables. In other words,

$$u(re^{i\theta_0}) = (\varphi * P_r) (\theta_0)$$

for $\varphi(\theta) := u(e^{i\theta})$ and

$$P_r(\theta) := \frac{1 - r^2}{1 - 2r\cos\theta + r^2}, \quad 0 \le r < 1, \ 0 \le \theta < 2\pi.$$

On the other hand,

$$P_r(\theta - \theta_0) = \Re \frac{e^{i\theta} + re^{i\theta_0}}{e^{i\theta} - re^{i\theta_0}},$$

so for any continuous (and 2π -periodic) function φ one has that $u(re^{i\theta_0}) := (\varphi * P_r)(\theta_0)$ defines a function harmonic in the unit disc and continuous up to the boundary.

Now if we consider the map $w: \mathbb{D} \to \mathbb{R}^2_+$ with

$$w(z) := i\frac{1-z}{1+z},$$

we get that (after another change of variables)

$$U(w) = \int_{\mathbb{R}} U(t)P_y(x-t) dt, \quad w = x + iy \in \mathbb{R}^2_+,$$

if U is harmonic in \mathbb{R}^2_+ and continuous in $\overline{\mathbb{R}}^2_+ \cup \{\infty\}$ with

$$P_y(t) = \frac{1}{\pi} \frac{y}{t^2 + y^2}, \quad y > 0, \ t \in \mathbb{R}.$$

As before, since

$$P_y(x-t) = \frac{1}{\pi} \Im \frac{1}{t - (x+iy)},$$

we see that $U(x+iy) := (\varphi * P_y)(x)$ defines a function which is harmonic in the upper halfplane and continuous up to the boundary (plus $\{\infty\}$), if $\phi \in C_0(\mathbb{R})$.

We actually can say more than that. Assume that $\varphi \in L^p(\mathbb{R})$ for some $1 , or <math>\mu$ is a finite measure on \mathbb{R} (or a positive measure on \mathbb{R} with $\int_{\mathbb{R}} \frac{d\mu(t)}{1+t^2} < \infty$), then, still, $\varphi * P_y$ defines a harmonic function on the upper halfplane. Indeed, for y > 0, p fixed the Poisson kernel P_y (along with its derivatives) is in $L^q(\mathbb{R})$, where $\frac{1}{q} + \frac{1}{p} = 1$, and is smooth in each variable, so by general theory one can differentiate under the integral.

Theorem 1.1 Assume that u is a harmonic function in the upper halfspace \mathbb{R}^2_+ . Then

• There exists a function $\varphi \in L^p$, 1 such that

$$u(x,y) = (\varphi * P_y)(x), \quad y > 0, \ x \in \mathbb{R},$$

if and only if

(1)
$$\sup_{y>0} \|u(\cdot,y)\|_{L^p(\mathbb{R})} < \infty.$$

In that case one has

(2)
$$\lim_{y \to 0} \|u(\cdot, y) - \varphi\|_{L^p(\mathbb{R})} = 0$$

for 1 , and

(3)
$$\lim_{y \to 0} \left| \int_{\mathbb{R}} u(t, y) g(t) dt - \int_{\mathbb{R}} \varphi(t) g(t) dt \right| = 0, \quad g \in L^{1}(\mathbb{R}),$$

for $p=\infty$

• There exists a finite measure μ on \mathbb{R} such that

$$u(x,y) = (\mu * P_y)(x), \quad y > 0, \ x \in \mathbb{R},$$

if and only if

$$\sup_{y>0} \|u(\cdot,y)\|_{L^1(\mathbb{R})} < \infty.$$

In that case one has

(5)
$$\lim_{y \to 0} \left| \int_{\mathbb{R}} u(t, y) g(t) dt - \int_{\mathbb{R}} g(t) d\mu(t) \right| = 0, \quad g \in C_0(\mathbb{R}).$$

• The function u is positive if and only if there exists a positive measure μ on \mathbb{R} and a non-negative constant c such that

(6)
$$u(x,y) = cy + (\mu * P_y)(x), \quad y > 0, \ x \in \mathbb{R},$$

with

(7)
$$\int_{\mathbb{R}} \frac{d\mu(t)}{1+t^2} < +\infty.$$

Proof. The "only if" part.

We already know that the convolution $\varphi * P_y$ or $\mu * P_y$ defines a harmonic function on the upper half-plane. To estimate norms one only has to apply Minkowski's inequality to the convolution representation,

$$\left(\int_{\mathbb{R}} |\varphi * P_y|^p(x) \, dx\right)^{\frac{1}{p}} \le \|\varphi\|_{L^p(\mathbb{R})}, \quad 1$$

and

$$\int_{\mathbb{R}} |\mu * P_y|(x) \, dx \le \int_{\mathbb{R}} |d\mu|.$$

For $p=\infty$ it follows from the fact that $P_y>0$ and $\int_{\mathbb{R}}P_y(t)\,dt\equiv 1,\ y>0.$

It remains to show that harmonic extensions to \mathbb{R}^2_+ converge to φ (re. μ) in appropriate norms. Observe first that shifts are continuous in L^p , $1 \leq p < \infty$ (but not at the ends of the scale — hence slightly different convergence there!). In other words,

$$\lim_{x \to 0} \|\varphi(x - \cdot) - \varphi(\cdot)\|_{L^p(\mathbb{R})} = 0, \quad \varphi \in L^p(\mathbb{R}).$$

It follows that

$$\|\varphi * P_y - \varphi\|_{L^p(\mathbb{R})} \le \int_{\mathbb{R}} P_y(t) \|\varphi(\cdot - t) - \varphi\|_{L^p(\mathbb{R})} dt = \left(\int_{|t| \le \sqrt{y}} + \int_{|t| > \sqrt{y}}\right) P_y(t) \|\varphi(\cdot - t) - \varphi\|_{L^p(\mathbb{R})} dt$$

by Minkowski's inequality. The first term tends to zero by continuity of shifts, and the second one by the estimate on the tail of Poisson kernel. In addition, if φ is uniformly continuous on \mathbb{R} , then its shifts are continuous in L^{∞} -norm, and arguing as above we arrive to the uniform convergence of $\varphi * P_y$ to φ . The properties (3) and (5) follow by duality. The "only if" part of the third point is obvious.

The 'if' part

We first need the following lemma.

Lemma 1 Assume u is bounded harmonic function in the upper halfplane and is continuous up to the boundary (so no condition at infinity!). Then

$$u(x+iy) = \int_{\mathbb{R}} P_y(x-t)u(t) dt = (u * P_y)(x), \quad x \in \mathbb{R}, \ y > 0.$$

Proof. Put

$$U(x + iy) = u(x + iy) - (u * P_u)(x).$$

Since u is continuous in \mathbb{R}^2_+ , we clearly have that $u*P_y\to u$ pointwise. In particular, U is bounded and harmonic in \mathbb{R}^2_+ , continuous up to the boundary, and $U\equiv 0$ on \mathbb{R} . Reflecting U on \mathbb{R}^2_- we see that the resulting function is bounded and harmonic in \mathbb{R}^2 , hence it is constant. \blacksquare Assume now that, say, (1) holds, and fix some $y_n>0$. By mean value property and Cauchy-Schwartz one has

$$|u(x+iy)| \le C(y) \sup_{y>0} ||u(\cdot,y)||_{L^p(\mathbb{R})}, \quad x \in \mathbb{R},$$

for some C(y). Lemma 1 implies that

$$u(x+i(y+y_n)) = (u(\cdot, y_n) * P_y)(x), \quad y > 0, q \in \mathbb{R}.$$

The sequence $u(\cdot, y_n)$ is bounded in $L^p(\mathbb{R})$, so by Banach-Alaoglu it has a weak limit. Since Poisson kernels are in respective L^q , we obtain the existence of $\varphi = \lim_{y_n \to 0} u(\cdot, y_n)$. The same works for p = 1 and weak convergence of measures. The third point is proven by going to the unit disc (where it follows from the second point) by a conformal map, and then going back.

Theorem 1.2 (F. and M. Riesz, 1917) Assume that μ is a singular finite measure on $\partial \mathbb{D}$ such that

$$\int_0^{2\pi} e^{-nt} \, d\mu(t) = 0, \quad n < 0.$$

Then $\mu \equiv 0$

1.3. Blaschke products.

Theorem 1.3 Assume $\{z_n\}_{n=1}^{\infty}$ is a sequence of points in the unit disc. Then the Blaschke product

(8)
$$B(z) := \prod_{n=1}^{\infty} \frac{-\overline{z}_n}{|z_n|} \frac{z - z_n}{1 - \overline{z}_n z}$$

converges uniformly on compact subsets of $\mathbb D$ to a nonzero holomorphic function in $\mathbb D$ if and only if

(9)
$$\sum_{n=1}^{\infty} (1 - |z_n|) < \infty.$$

In this case the zeros of B are precisely the points z_n with respective multiplicity.

Theorem 1.4 (F. Riesz) Assume $f \in H^p(\mathbb{D})$ with $1 \le p \le \infty$ and f is not identically zero. Let $\{z_n\}_{n=1}^{\infty}$ be the sequence of zeros of f (w.r.t. their multiplicity). Then

$$(10) \qquad \sum_{n \in \mathbb{N}} (1 - |z_n|) < \infty,$$

and if B is the Blaschke product with zeros $\{z_n\}$, then $\frac{f}{B}$ belongs to $H^p(\mathbb{D})$, has no zeros in \mathbb{D} , and

(11)
$$\left\| \frac{f}{B} \right\|_{H^p(\mathbb{D})} = \|f\|_{H^p(\mathbb{D})}.$$