
1. Hardy spaces on D and R2
+

1.1. Basic definitions. Given 1 ≤ p <∞ we define

Hp(D) :=

{
f ∈ Hol(D) : ‖f‖H2(D) :=

1

2π
sup

0<r<1

(∫ 2π

0

|f(reiθ)| dθ
) 1

p

<∞

}
,

and

Hp(R2
+) :=

{
f ∈ Hol(R2

+) : ‖f‖H2(R2
+) := sup

0<y<∞

(∫
R
|f(x+ iy)| dx

) 1
p

<∞

}
.

For p =∞ we just consider bounded holomorphic functions in respective domains. Note that in R2
+ one has

to consider all values of y > 0, case in point f(z) = e
−i z

p

(z+i)
2
p

. These classes are almost images of each other

w.r.t. a conformal map D 7→ R2
+, however, say, non-zero constants do not belong to Hp(R2

+) for finite p. We

consider both these spaces simultaneously, using one of them where it is more convenient.

1.2. Poisson kernel representation. Assume that f =
∑∞
n=0 anz

n is analytic in D, continuous up to the

boundary. Then, letting u := <f , we have

u(reiθ) =
∑
n∈Z

Anr
|n|einθ, 0 ≤ r < 1, 0 ≤ θ < 2π,

with

An =
1

2
an, n > 0

A0 = <a0

An =
1

2
an, n < 0.

Hence for r < 1 one has

u(reiθ0) =
1

2π

∫ 2π

0

u(eiθ)
∑
n∈Z

r|n|ein(θ0−θ) dθ,

and ∑
n∈N

r|n|einθ0 =
1− r2

1 + r2 − 2r cos θ0
, 0 ≤ r < 1, 0 ≤ θ0 < 2π,

which is the Poisson kernel for the unit disk D. One can look at this representation in a different way.

Assume u is harmonic on D, continuous up to the boundary, then

u(0) =
1

2π

∫ 2π

0

u(eit) dt

by MVP. Now fix a point z0 = reiθ0 , 0 ≤ r < 1, 0 ≤ θ0 < 2π, and consider the Möbius transformation

τ = τz0 that moves z0 to 0, so that

τ(z) =
z − z0
1− z0z

.

Remark. Möbius transformations are conformal self-maps of the unit disc, they have the following form

τw,θ(z) = eiθ
z − w
1− wz

, w ∈ D, θ ∈ [0, 2π).

Clearly τ(∂D) = D and u(τ−1(·)) is again a harmonic function in D, continuous up to the boundary. Hence

u(z0) = u(τ−1(0)) =
1

2π

∫ 2π

0

u(τ−1(eit))dt =
1

2π

∫ 2π

0

u(eiθ)
1− r2

1− 2r cos(θ − θ0) + r2
dθ

by change of variables. In other words,

u(reiθ0) = (ϕ ∗ Pr) (θ0)
1
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for ϕ(θ) := u(eiθ) and

Pr(θ) :=
1− r2

1− 2r cos θ + r2
, 0 ≤ r < 1, 0 ≤ θ < 2π.

On the other hand,

Pr(θ − θ0) = <e
iθ + reiθ0

eiθ − reiθ0
,

so for any continuous (and 2π-periodic) function ϕ one has that u(reiθ0) := (ϕ ∗ Pr) (θ0) defines a function,

harmonic in the unit disc and continuous up to the boundary.

Now if we consider the map w : D 7→ R2
+ with

w(z) := i
1− z
1 + z

,

we get that (after another change of variables)

U(w) =

∫
R
U(t)Py(x− t) dt, w = x+ iy ∈ R2

+,

if U is harmonic in R2
+ and continuous in R2

+ ∪ {∞} with

Py(t) =
1

π

y

t2 + y2
, y > 0, t ∈ R.

As before, since

Py(x− t) =
1

π
= 1

t− (x+ iy)
,

we see that U(x + iy) := (ϕ ∗ Py) (x) defines a function which is harmonic in the upper halfplane and

continuous up to the boundary (plus {∞}), if φ ∈ C0(R).

We actually can say more than that. Assume that ϕ ∈ Lp(R) for some 1 < p ≤ ∞, or µ is a finite measure

on R (or a positive measure on R with
∫
R
dµ(t)
1+t2 <∞), then, still, ϕ ∗ Py defines a harmonic function on the

upper halfplane. Indeed, for y > 0, p fixed the Poisson kernel Py (along with its derivatives) is in Lq(R),

where 1
q + 1

p = 1, and is smooth in each variable, so by general theory one can differentiate under the integral.

Theorem 1.1 Assume that u is a harmonic function in the upper halfspace R2
+. Then

• There exists a function ϕ ∈ Lp, 1 < p ≤ ∞ such that

u(x, y) = (ϕ ∗ Py) (x), y > 0, x ∈ R,

if and only if

(1) sup
y>0
‖u(·, y)‖Lp(R) <∞.

In that case one has

(2) lim
y→0
‖u(·, y)− ϕ‖Lp(R) = 0

for 1 < p <∞, and

(3) lim
y→0

∣∣∣∣∫
R
u(t, y)g(t) dt−

∫
R
ϕ(t)g(t) dt

∣∣∣∣ = 0, g ∈ L1(R),

for p =∞.

• There exists a finite measure µ on R such that

u(x, y) = (µ ∗ Py) (x), y > 0, x ∈ R,

if and only if

(4) sup
y>0
‖u(·, y)‖L1(R) <∞.
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In that case one has

(5) lim
y→0

∣∣∣∣∫
R
u(t, y)g(t) dt−

∫
R
g(t) dµ(t)

∣∣∣∣ = 0, g ∈ C0(R).

• The function u is positive if and only if there exists a positive measure µ on R and a non-negative

constant c such that

(6) u(x, y) = cy + (µ ∗ Py) (x), y > 0, x ∈ R,

with

(7)

∫
R

dµ(t)

1 + t2
< +∞.

Proof. The ”only if” part.

We already know that the convolution ϕ ∗Py or µ ∗Py defines a harmonic function on the upper half-plane.

To estimate norms one only has to apply Minkowski’s inequality to the convolution representation,(∫
R
|ϕ ∗ Py|p(x) dx

) 1
p

≤ ‖ϕ‖Lp(R), 1 < p <∞,

and ∫
R
|µ ∗ Py|(x) dx ≤

∫
R
|dµ|.

For p =∞ it follows from the fact that Py > 0 and
∫
R Py(t) dt ≡ 1, y > 0.

It remains to show that harmonic extensions to R2
+ converge to ϕ (re. µ) in appropriate norms. Observe

first that shifts are continuous in Lp, 1 ≤ p <∞ (but not at the ends of the scale — hence slightly different

convergence there!). In other words,

lim
x→0
‖ϕ(x− ·)− ϕ(·)‖Lp(R) = 0, ϕ ∈ Lp(R).

It follows that

‖ϕ ∗ Py − ϕ‖Lp(R) ≤
∫
R
Py(t)‖ϕ(· − t)− ϕ‖Lp(R) dt =

(∫
|t|≤√y

+

∫
|t|>√y

)
Py(t)‖ϕ(· − t)− ϕ‖Lp(R) dt

by Minkowski’s inequality. The first term tends to zero by continuity of shifts, and the second one by the

estimate on the tail of Poisson kernel. In addition, if ϕ is uniformly continuous on R, then its shifts are

continuous in L∞-norm, and arguing as above we arrive to the uniform convergence of ϕ ∗ Py to ϕ. The

properties (3) and (5) follow by duality. The ”only if” part of the third point is obvious.

The ’if’ part

We first need the following lemma.

Lemma 1 Assume u is bounded harmonic function in the upper halfplane and is continuous up to the

boundary (so no condition at infinity!). Then

u(x+ iy) =

∫
R
Py(x− t)u(t) dt = (u ∗ Py)(x), x ∈ R, y > 0.

Proof. Put

U(x+ iy) = u(x+ iy)− (u ∗ Py)(x).

Since u is continuous in R2

+, we clearly have that u ∗ Py → u pointwise. In particular, U is bounded and

harmonic in R2
+, continuous up to the boundary, and U ≡ 0 on R. Reflecting U on R2

− we see that the

resulting function is bounded and harmonic in R2, hence it is constant. Assume now that, say, (1) holds,

and fix some yn > 0. By mean value property and Cauchy-Schwartz one has

|u(x+ iy)| ≤ C(y) sup
y>0
‖u(·, y)‖Lp(R), x ∈ R,
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for some C(y). Lemma 1 implies that

u(x+ i(y + yn)) = (u(·, yn) ∗ Py)(x), y > 0, q ∈ R.

The sequence u(·, yn) is bounded in Lp(R), so by Banach-Alaoglu it has a weak limit. Since Poisson kernels

are in respective Lq, we obtain the existence of ϕ = limyn→0 u(·, yn). The same works for p = 1 and weak

convergence of measures. The third point is proven by going to the unit disc (where it follows from the

second point) by a conformal map, and then going back.

Theorem 1.2 (F. and M. Riesz, 1917) Assume that µ is a singular finite measure on ∂D such that∫ 2π

0

e−nt dµ(t) = 0, n < 0.

Then µ ≡ 0

1.3. Blaschke products.

Theorem 1.3 Assume {zn}∞n=1 is a sequence of points in the unit disc. Then the Blaschke product

(8) B(z) :=

∞∏
n=1

−zn
|zn|

z − zn
1− znz

converges uniformly on compact subsets of D to a nonzero holomorphic function in D if and only if

(9)

∞∑
n=1

(1− |zn|) <∞.

In this case the zeros of B are precisely the points zn with respective multiplicity.

Theorem 1.4 (F. Riesz) Assume f ∈ Hp(D) with 1 ≤ p ≤ ∞ and f is not identically zero. Let {zn}∞n=1 be

the sequence of zeros of f (w.r.t. their multiplicity). Then

(10)
∑
n∈N

(1− |zn|) <∞,

and if B is the Blaschke product with zeros {zn}, then f
B belongs to Hp(D), has no zeros in D, and

(11)

∥∥∥∥ fB
∥∥∥∥
Hp(D)

= ‖f‖Hp(D).


