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Introduction to Deep Learning

@ Deep Learning: Convolutional neural networks.

@ Deep Learning for Supervised Classification Tasks e.g.
classification of images
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Imagenet Challenge ILSVRC:

ImageNet Large Scale Visual Recognition Challenge

. IMAGENET

e 2010 20000 images, 20 categories, 25% error.

2017: the challenge is declared won. o
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. IMAGENET

e 2010 20000 images, 20 categories, 25% error.
@ 2011 1 million images, 1000 categories: 16% error.
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Imagenet Challenge ILSVRC:
ImageNet Large Scale Visual Recognition Challenge

- IMAGENET

e 2010 20000 images, 20 categories, 25% error.
@ 2011 1 million images, 1000 categories: 16% error.
@ 2015 1 million images, 1000 categories: 4% error.

2017: the challenge is declared won. o
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Images in Imagen

Calsta

Rita Fioresi, FaBiT, Unibo Geometric Structure



‘ Images in Imagenet category “chair”
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Benchmark datasets: MNIST and CIFAR10
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Benchmark datasets: MNIST and CIFAR10
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Ingredients for Deep Learning

@ Score function: it is a function of the weights w (es. linear

classifier)
stretch pixels into single column
02 |-05| 0.1 | 2.0 -96.8 | cat score
15| 13 | 21 | 00 (ET0 |[—
— - "
et Image 0 |025/|02|-03 61.95 | ship score

f(ai; W, b)
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Ingredients for Deep Learning

@ Score function: it is a function of the weights w (es. linear

classifier)
stretch pixels into single column
02 |-05| 0.1 | 2.0 -96.8 | catscore
15| 13 | 21 | 00 (ET0 |[—
— - "
et Image 0 |025/|02|-03 61.95 | ship score
w f(zi; W,b)

@ Loss function: measures error
(L; datum i loss, y; correct label)
ofvi
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Ingredients for Deep Learning

@ Score function: it is a function of the weights w (es. linear

classifier)
stretch pixels into single column
02 |-05|01 |20 catlscore
15| 13 | 21 | 00 oGS
e 0 [025]| 02 |-03 :
input image ship score

@ Loss function: measures error
(L; datum i loss, y; correct label)
f;

L :—Iog£ +/ogZe L=>"1
J i

e Optimizer: for weights update “minimizes” the Loss
32
wi(t +1) = wi(t) = aV Lstoe,  Vistoe = ¥ Viandt)  com
i=1
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Divide the dataset (ex. CIFAR10):
80% Data for training

10% Data for validation

10% Data for test (ONCE)

© Learning: determine weights parameters

Accuracy: percentage of accurate predictions on tests set.
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Divide the dataset (ex. CIFAR10):
80% Data for training

10% Data for validation

10% Data for test (ONCE)

© Learning: determine weights parameters

@ Validation: determine net structure.
Example: choose loss function, number of layers, learning rate
Goal: find best hyperparameters.

Accuracy: percentage of accurate predictions on tests set.
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Divide the dataset (ex. CIFAR10):
80% Data for training

10% Data for validation

10% Data for test (ONCE)

© Learning: determine weights parameters

@ Validation: determine net structure.
Example: choose loss function, number of layers, learning rate
Goal: find best hyperparameters.

© Test: once at the end.
Accuracy: percentage of accurate predictions on tests set.
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Learning process

@ Step 1: Compute score of images in training set
(Forward pass)
The weights are inizialized randomly.
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(i.e. measure the "difference” between given label and correct
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@ Step 1: Compute score of images in training set
(Forward pass)
The weights are inizialized randomly.

o Step 2: Compute the loss
(i.e. measure the "difference” between given label and correct
label for each datum in training set).

o Step 3: Compute Stochastic Gradient. (Backpropagation)
o Step 4: update weights.
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Learning process

@ Step 1: Compute score of images in training set
(Forward pass)
The weights are inizialized randomly.

o Step 2: Compute the loss
(i.e. measure the "difference” between given label and correct
label for each datum in training set).

o Step 3: Compute Stochastic Gradient. (Backpropagation)
o Step 4: update weights.
@ Step 5: Repeat Step 1-2-3 up to an epoch.
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Learning process

@ Step 1: Compute score of images in training set
(Forward pass)
The weights are inizialized randomly.

o Step 2: Compute the loss
(i.e. measure the "difference” between given label and correct
label for each datum in training set).

Step 3: Compute Stochastic Gradient. (Backpropagation)
Step 4: update weights.
Step 5: Repeat Step 1-2-3 up to an epoch.

Step 6: After 150-200 epochs reduce learning rate and repeat
all steps 1-5.
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(Forward pass)
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Learning process

@ Step 1: Compute score of images in training set
(Forward pass)
The weights are inizialized randomly.

o Step 2: Compute the loss
(i.e. measure the "difference” between given label and correct
label for each datum in training set).

Step 3: Compute Stochastic Gradient. (Backpropagation)
Step 4: update weights.
Step 5: Repeat Step 1-2-3 up to an epoch.

Step 6: After 150-200 epochs reduce learning rate and repeat
all steps 1-5.

Epoch= || Training set|| /||minibatch size||.

NOTE: measure accuracy every 10-20 epochs.

Example: 40000 training set (CIFAR10), 32 images in minibatch,

1 epoch=40000/32 updates. Clem
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Loss accuracy in epochs: CIFAR10

loss

low learning rate
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high learning rate

good learning rate
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Validation process

Purpose of validation: Determine hyperparameters:

@ « learning rate,
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Purpose of validation: Determine hyperparameters:
@ « learning rate,

B minibatch size,

optimizer (SGD, Adam),

net structure (e.g. how many layers, parameters)

training (e.g. number of epochs)
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Validation process

Purpose of validation: Determine hyperparameters:
@ « learning rate,
@ B minibatch size,
@ optimizer (SGD, Adam),
@ net structure (e.g. how many layers, parameters)
@ training (e.g. number of epochs)

We vary hyperparameters giving some values:
e eg. «=0.1,00.1 etc

We use the validation set to test accuracy, while searching for
best hyperparameters.
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Validation process

Purpose of validation: Determine hyperparameters:
@ « learning rate,
@ B minibatch size,
@ optimizer (SGD, Adam),
@ net structure (e.g. how many layers, parameters)
@ training (e.g. number of epochs)
We vary hyperparameters giving some values:
e eg. «=0.1,00.1 etc
@ eg B=23,16,32

We use the validation set to test accuracy, while searching for
best hyperparameters.
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ATTENTION!: use test set ONCE to avoid overfitting!

accuracy training accurac

validation accuracy:
little overfitting

validation accuracy: strong overfitting

epoch

Validation technique: cross validation=rotation of the training
set.
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Loss (projection) as function of weights.
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Information Geometry

Information Geometry: studies geometrical structures on
manifolds in the parameter space and the data domain.

Amari, S.-I. Natural gradient works efficiently in learning. Neural
computation, 10(2):251-276, 1998.
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Information Geometry: studies geometrical structures on
manifolds in the parameter space and the data domain.

Amari, S.-I. Natural gradient works efficiently in learning. Neural
computation, 10(2):251-276, 1998.

Amari Loss: I(x,w) = —log(p(y|x, w))
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Information Geometry: studies geometrical structures on
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Amari, S.-I. Natural gradient works efficiently in learning. Neural
computation, 10(2):251-276, 1998.

Amari Loss: I(x,w) = —log(p(y|x, w))

Loss function: L(x,w) = E,q4[/(x, w)]
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Information Geometry

Information Geometry: studies geometrical structures on
manifolds in the parameter space and the data domain.

Amari, S.-I. Natural gradient works efficiently in learning. Neural
computation, 10(2):251-276, 1998.

Amari Loss: I(x,w) = —log(p(y|x, w))
Loss function: L(x,w) = E,q4[/(x, w)]
L(x, w) = Ey~q[—log(p(y|x, w))] = KL(q(y|x)||p(y|x, w))+constant

p(y|x,w) = (pi(y|x, w))i=1,.. c: discrete probability distribution of
data x
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Information Geometry

Information Geometry: studies geometrical structures on
manifolds in the parameter space and the data domain.

Amari, S.-I. Natural gradient works efficiently in learning. Neural
computation, 10(2):251-276, 1998.

Amari Loss: I(x,w) = —log(p(y|x, w))

Loss function: L(x,w) = E,q4[/(x, w)]

L(x, w) = Ey~q[—log(p(y|x, w))] = KL(q(y|x)||p(y|x, w))+constant

p(y|x,w) = (pi(y|x, w))i=1,.. c: discrete probability distribution of
data x

q(y|x): mass discrete probability distribution.

C: classification labels y.
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Information Geometry

Information Geometry: studies geometrical structures on
manifolds in the parameter space and the data domain.

Amari, S.-I. Natural gradient works efficiently in learning. Neural
computation, 10(2):251-276, 1998.
Amari Loss: I(x,w) = —log(p(y|x, w))

Loss function: L(x,w) = E,q4[/(x, w)]

L(x, w) = Ey~q[—log(p(y|x, w))] = KL(q(y|x)||p(y|x, w))+constant

p(y|x,w) = (pi(y|x, w))i=1,.. c: discrete probability distribution of
data x

q(y|x): mass discrete probability distribution.

C: classification labels y.

w: parameters.
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The empirical Loss function as expected value of the Amari Loss:
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The empirical Loss function as expected value of the Amari Loss:

L(x, w) = Ey~ql—log(p(y|x, w))] =

C C
=" ailylx) log X k) Z (y[x) log qi(y|x) =
pa pilylx,w) =
= KL(q(y1x)|lp(y|x, w)) — Z qi(y|x) log ai(y|x). (1)

i=1
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The empirical Loss function as expected value of the Amari Loss:

L(x, w) = Ey~ql—log(p(y|x, w))] =

C C
=" ailylx) log X k) Z (y[x) log qi(y|x) =
pa pilylx,w) =
= KL(q(y1x)|lp(y|x, w)) — Z qi(y|x) log ai(y|x). (1)

i=1

The Kullback-Leibler divergence measures the “difference”
between the two probability distributions the “empirical
distribution” p and the “true distribution” q.
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LOSS: Softmax S and Cross Entropy Loss L

L(x, w) = — log[S(x, w)] = — log[e™ ™) /(e() + ... + e())]
L(x,w): loss of datum x with label y;.
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LOSS: Softmax S and Cross Entropy Loss L

L(x, w) = — log[S(x, w)] = — log[e™ ™) /(e() + ... + e())]
L(x,w): loss of datum x with label y;.

Samples Logits
Cat O- @ @ 5 4 2 Softmax 0.71. 0.26 0.04
@ @ e @ 4 2. 8 0.02 000 0.98
[ Dog | ® ® ., . 09 oss o
Input Layer € R1® Hidden Layer € R® Output Layer € R?
s
e
Sx) = ———7——5 =071
= Frava
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LOSS: Softmax S and Cross Entropy Loss L

L(x, w) = — log[S(x, w)] = — log[e™ ™) /(e() + ... + e())]
L(x,w): loss of datum x with label y;.

Samples Logits
Cat o ® @ ° * 2 Softmax_ 071 02 oo
@ S @ :; @ 4 2 8 002 000 0.98
m o ® .|, |, 049 049 0.2
\
Input Layer € R™® Hidden Layer € R® Output Layer € R?
Se) = 25+jz+e2 =07
Loss =— |Og(scat) - |Og(5horse) - Iog(sdo ) =
g

— —1og(0.71) — log(0.002) — log(0.02) = 0.34 + 6 + 3.91 = 10,2
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The Fisher matrix F and the Local Data Matrix G
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The Fisher matrix F and the Local Data Matrix G

F(x,w) =Eyp[Vwlogp(ylx,w) (Vi logp(y|x,w))T]

Gx,w) = Eyp[Vi log p(ylx, w) - (Vx log p(ylx, w))].

Key Facts:
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The Fisher matrix F and the Local Data Matrix G

F(x,w) =Eyp[Vwlogp(ylx,w) (Vi logp(y|x,w))T]

Glx.w) =E, [V logplylx, w) - (Vilog p(ylx,w))T].
Key Facts:

KL(p(ylx, w + ow)||p(y|x, w)) == 5(6w)TF(x, w)(dw) + O(|[6w|P*)

KL(p(ylx + x, w)llp(ylx, w)) == 5(x)7 G(x, w)(dx) + O(||6x[]*)
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The Fisher matrix F and the Local Data Matrix G

F(x;w) = Eyep[Viwlog p(ylx, w) - (Vi log p(ylx, w))T]
Glx,w) =By plVslog plylx, w) - (Vs log plylx, w) ]
Key Facts:
KL(p(y|x, w +dw)||p(ylx, w)) = 5(6w) T F(x, w)(dw) + O([ow|[*)
KL(p(y|x + x, w)|lp(y|x, w)) = 3(6x)7 G(x, w)(dx) + O(|[ox|]*)

The Fisher matrix F provides a natural metric on the parameter
space during dynamics of the stochastic gradient descent.
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The Fisher matrix F and the Local Data Matrix G

F(x,w) =Eyp[Vwlogp(ylx,w) (Vi logp(y|x,w))T]

Glx.w) =E, [V logplylx, w) - (Vilog p(ylx,w))T].
Key Facts:

KL(p(ylx, w + ow)||p(y|x, w)) == 5(6w)TF(x, w)(dw) + O(|[6w|P*)

(0x) TG (x, w)(dx) + O([[ox|]*)

N|=

KL(p(y|x + ox, w)[|p(y[x, w)) =

The Fisher matrix F provides a natural metric on the parameter
space during dynamics of the stochastic gradient descent.
The Local Data matrix G provides a natural metric on the data

domain.
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The local data matrix G during optimization
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The local data matrix G during optimization

0.06

Mean trace of G(x, w)

o 5000 10000 15000 20000 25000 30000
Steps
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The local data matrix G during optimization

0.06

Mean trace of G(x, w)

o 5000 10000 15000 20000 25000 30000
Steps

This is why we do not want a fully trained model: the information
is lost at equilibrium! Clsme
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Properties of the Fisher matrix F and local data matrix G
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Properties of the Fisher matrix F and local data matrix G

Q@ F(x,w) and G(x,w) is a positive semidefinite symmetric
matrix.
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Properties of the Fisher matrix F and local data matrix G

Q@ F(x,w) and G(x,w) is a positive semidefinite symmetric
matrix.

@ ker F(x,w) = (span;_; _ c{Vw log pi(y|x,w)})*;
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Properties of the Fisher matrix F and local data matrix G

Q@ F(x,w) and G(x,w) is a positive semidefinite symmetric
matrix.

..... c{Vwlog pi(y|x, w)})*;
@ ker G(x, w) = (span;_; _ {Vlogpi(y|x,w)})* .

@ ker F(x,w) = (span;_;
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Properties of the Fisher matrix F and local data matrix G

Q@ F(x,w) and G(x,w) is a positive semidefinite symmetric
matrix.

@ ker F(x,w) = (span;_; _ c{Vw log pi(y|x,w)})*;
@ ker G(x, w) = (span;_; _ {Vlogpi(y|x,w)})* .
Q rank F(x,w) < C, rank G(x,w) < C.
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Properties of the Fisher matrix F and local data matrix G

Q@ F(x,w) and G(x,w) is a positive semidefinite symmetric
matrix.

@ ker F(x,w) = (span;_; _ c{Vw log pi(y|x,w)})*;
@ ker G(x, w) = (span;_; _ {Vlogpi(y|x,w)})* .
Q rank F(x,w) < C, rank G(x,w) < C.

Dataset  G(x,w) size rank G(x,w) bound

MNIST 784 10
CIFAR-10 3072 10
CIFAR-100 3072 100
ImageNet 150528 1000

C: is the number of classes for our classification task

Calsta

Rita Fioresi, FaBiT, Unibo Geometric Structure



The Geometric Structure of Data

Deep Learning and classification tasks:
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The Geometric Structure of Data

Deep Learning and classification tasks:

@ Data occupies a domain in R”

Celsra

Rita Fioresi, FaBiT, Unibo Geometric Structure
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Deep Learning and classification tasks:

@ Data occupies a domain in R”
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@ The data domain is mostly composed of meaningless noise:
data occupy a thin region of it!
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Deep Learning and classification tasks:

@ Data occupies a domain in R”
(e.g. MNIST in R74 n = 784 = 28 x 28 pixels)

@ The data domain is mostly composed of meaningless noise:
data occupy a thin region of it!

Main result:

@ A partially trained neural network decomposes the data
domain in R" as the disjoint union of submanifolds (the
leaves of a foliation).
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The Geometric Structure of Data

Deep Learning and classification tasks:

@ Data occupies a domain in R”
(e.g. MNIST in R74 n = 784 = 28 x 28 pixels)

@ The data domain is mostly composed of meaningless noise:
data occupy a thin region of it!

Main result:

@ A partially trained neural network decomposes the data
domain in R" as the disjoint union of submanifolds (the
leaves of a foliation).

@ The dimension d of every submanifold (every leaf of the
foliation) is bounded by the number of classes C of our
classification model: d << n (e.g. MNIST d =9 << 784).
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Data leaf versus Noise leaf

The data domain is the disjoint union of subdomains (foliation)
and the training data are all on one leaf.
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Data leaf versus Noise leaf

The data domain is the disjoint union of subdomains (foliation)
and the training data are all on one leaf.
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a noise leaf

data leaf
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Rita Fioresi, FaBiT, Unibo Geometric Structure
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Data manifold

Main Result/1. Let w be the weights of a deep ReLU neural
network classifier, p given by softmax, G(x, w) the local data
matrix.
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Data manifold

Main Result/1. Let w be the weights of a deep ReLU neural
network classifier, p given by softmax, G(x, w) the local data
matrix.

The distribution in the data domain:
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Data manifold

Main Result/1. Let w be the weights of a deep ReLU neural
network classifier, p given by softmax, G(x, w) the local data
matrix.

The distribution in the data domain:

x = Dy = (ker G(x, w))*

is involutive i.e.
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Data manifold

Main Result/1. Let w be the weights of a deep ReLU neural
network classifier, p given by softmax, G(x, w) the local data
matrix.

The distribution in the data domain:

x = Dy = (ker G(x, w))*
is involutive i.e.
[X,Y] €D, VX, YeD.

Main result/2.
@ At each point in the dataset in R”, ker G(x, w)™ is tangent to
a submanifold (data leaf) of dimension rank G(x,w) < C
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Data manifold

Main Result/1. Let w be the weights of a deep ReLU neural
network classifier, p given by softmax, G(x, w) the local data
matrix.

The distribution in the data domain:

x = Dy = (ker G(x, w))*
is involutive i.e.
[X,Y] €D, VX, YeD.

Main result/2.
@ At each point in the dataset in R”, ker G(x, w)™ is tangent to
a submanifold (data leaf) of dimension rank G(x,w) < C
@ G defines a foliation on R” of rank at most C — 1 (Frobenius
Thm).
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Data manifold

Main Result/1. Let w be the weights of a deep ReLU neural
network classifier, p given by softmax, G(x, w) the local data
matrix.

The distribution in the data domain:

x = Dy = (ker G(x, w))*
is involutive i.e.
[X,Y] €D, VX, YeD.

Main result/2.
@ At each point in the dataset in R”, ker G(x, w)™ is tangent to
a submanifold (data leaf) of dimension rank G(x,w) < C
@ G defines a foliation on R” of rank at most C — 1 (Frobenius
Thm).
Remark: This is not true for the distribution via the Fisher matrix!

/o €
w — D, := (ker F(w))
is not involutive (e.g. MNIST, lenet).
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Riemannian Structure on the Data Manifold

Facts
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Riemannian Structure on the Data Manifold

Facts
o The matrix G(x, w), restricted to the subspace (ker G(x, w))~*
gives a Riemannian metric to each leaf of the foliation.
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Riemannian Structure on the Data Manifold

Facts

o The matrix G(x, w), restricted to the subspace (ker G(x, w))~*

gives a Riemannian metric to each leaf of the foliation.

@ All the dataset is on one leaf: the data leaf
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Riemannian Structure on the Data Manifold

Facts

o The matrix G(x, w), restricted to the subspace (ker G(x, w))~*

gives a Riemannian metric to each leaf of the foliation.

@ All the dataset is on one leaf: the data leaf
We perform dimensionality reduction!

@ We move from a point x in our dataset to any other point x’
in the dataset with an with an horizontal path, that is a path
on the data leaf.
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Riemannian Structure on the Data Manifold

Facts

o The matrix G(x, w), restricted to the subspace (ker G(x, w))~*
gives a Riemannian metric to each leaf of the foliation.

@ All the dataset is on one leaf: the data leaf
We perform dimensionality reduction!

@ We move from a point x in our dataset to any other point x’
in the dataset with an with an horizontal path, that is a path
on the data leaf.

@ Not all points on the data leaf are in the data set, but they
represent symbols.
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Moving on the data leaf: MNIST

Moving around in on the data leaf:
@ We can connect any two data=images.
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Moving on the data leaf: MNIST

Moving around in on the data leaf:
@ We can connect any two data=images.
@ Any path starting from one image and going to another goes
through data with the same level of noise.
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Moving on the data leaf: MNIST

Moving around in on the data leaf:
@ We can connect any two data=images.
@ Any path starting from one image and going to another goes
through data with the same level of noise.

Iteration 0 Iteration 625 Iteration 1250. Iteration 1875: Iteration 2500. Iteration 3125. Iteration 3750 Iteration 4375, Iteration 5000
predicted label 1 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with
probability 0.9880  probability 0.9974  probability 0.9962  probability 0.9893  probability 0.9950  probability 0.9964  probability 0.9946  probability 0.9938  probability 0.9937

(f",'-"t'."f." sl B ool B -l O -
> o - L X = B o
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Moving on the data leaf: MNIST

Moving around in on the data leaf:
@ We can connect any two data=images.
@ Any path starting from one image and going to another goes
through data with the same level of noise.
Iteration . Iteration 625, Iteration 1250 Iteration 1875 Iteration 2500 Iteration 3125: Iteration 3750: Iteration 4375 Iteration 5000:

predicted label 1 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with
probability 0.9880  probability 0.9974  probability 0.9962  probability 0.9893  probability 0.9950  probability 0.9964  probability 0.9946  probability 0.9938  probability 0.9937

(f",'-"t'."f." sl B ool B -l O -
> o - L X = B o

We can connect a digit from MNIST to a symbol not in MNIST
moving on the data leaf:
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Moving on the data leaf: MNIST

Moving around in on the data leaf:
@ We can connect any two data=images.
@ Any path starting from one image and going to another goes
through data with the same level of noise.

Iteration 0 Iteration 625 Iteration 1250. Iteration 1875: Iteration 2500. Iteration 3125. Iteration 3750 Iteration 4375, Iteration 5000
predicted label 1 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with
probability 0.9880  probability 0.9974  probability 0.9962  probability 0.9893  probability 0.9950  probability 0.9964  probability 0.9946  probability 0.9938  probability 0.9937

We can connect a digit from MNIST to a symbol not in MNIST
moving on the data leaf:

Iteration 1250: Iteration 1875: Iteration 2500. Iteration 3125. Iteration 3750 Iteration 4375, Iteration 5000
Dremcteu \abel 9 with Dremcteu \EDEI 5 With predlcted label 5 With predicted fabel 5 With predicied 18bel 5 Wih predicted Iabel 5 With predicted /abel 5 with predicted Iabel 5 with predicted Tabe 5 with
probability 0.9133  probability 0.9937  probability 0.9808  probability 0.9796  probability 0.9670  probability 0.9512  probability 0.9448  probability 0.9228  probability 0.89564

BHEHEA

q =
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Moving away from the data leaf: MNIST

When moving away from a given data leaf, noise is added, but the
accuracy is high.
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When moving away from a given data leaf, noise is added, but the
accuracy is high.

eration 0 Iteration 125 Iteration 250 Iteration 375 Iteration 500 teration 625 Iteration 750 Iteration 875 Iteration 1000
predicted label 0 with predicted label 0 with predicted label 0 with predicted label 0 with predicted Iabel 0 with predicted label 0 with predicted label 0 with predicted label 0 with predicted label 0 with
probability 0.9995  probability 0.5995  probability 0.9993  probability 0.9978  probability 0.9920  probability 0.9718  probability 0.9245  probability 0.8533  probability 0.7713
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Moving away from the data leaf: MNIST

When moving away from a given data leaf, noise is added, but the
accuracy is high.

eration teration 5 teration 625 Iteratio Iteration 1000
predicted| et with prem(led Rbel 8 with prenmn et 0 with prenmn Db 8 with predicted el Buith predicted label 0 with predicted Wbt 0 with predl(ted Wbl o with predicted label 0 with
probability 0.9995  probability 0.5995  probability 0.9993  probability 0.9978  probability 0.9920  probability 0.9718  probability 0.9245  probability 0.8533  probability 0.7713

Iteration 0 Iteration 125 Iteration 250 Iteration 375 Iteration 500: Iteration 625 Iteration 750 Iteration 875 Iteration 1000
predicted label 2 with predicted label 2 with predicted label 2 with predicted label 2 with predicted label 2 with predicted label 2 with predicted label 2 with predicted label 2 with predicted label 2 with
probability 1.0000  probability 10000 probability 1.0000  probability 10000 probability 10000 probability 09993 probability 09925 probability 09680 probability 09294

Geometric Structure




Moving on a noisy leaf: MNIST

We can connect a noisy datum with any other datum with the
same level of noise:

Calisra

Rita Fioresi, FaBiT, Unibo Geometric Structure



Moving on a noisy leaf: MNIST

We can connect a noisy datum with any other datum with the
same level of noise:

Iteration 1250 Iteration 2500 Iteration 3750 teration 5000 teration 6250 Iteration 7500 Keration 8750 Iteration 10000
pmm(led et with predicted label 2 with predicted label 2 with predicted label 2 with predicted label 2 with predicted label 2 with predicted label 2 with predicted label 2 with predicted label 2 with
probability 0.9883  probability 0.9998  probability 0.9998  probability 0.9998  probability 0.9938  probability 0.9938  probability 0.9998  probability 0.9938  probability 0.9938
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Moving on a noisy leaf: MNIST

We can connect a noisy datum with any other datum with the
same level of noise:

Iteration 1250 Iteration 2500 Iteration 3750 teration 5000 lteratian 5250 Iteration 7500 Keration 8750 Iteration 10000
predicted| et with predicted label 2 with predicted label 2 with predicted label 2 with predicted label 2 with predicted label 2 with predicted label 2 with predicted label 2 with predicted label 2 with
robanilty D983 | provobiliy 09938 prabaility 0.5958 * probability 05938 prosability0 9938 probablity 0 3998, prabability 0.9098 ' prababilfy 09353 probabiliy 05938

Iteration 0 Iteration 1250 Iteration 2500 Iteration 3750 Iteration 5000- teration 6250 Iteration 7500 Iteration 8750 Iteration 10000:
predicted label 3 with predicted label 7 with predicted label 7 with predicted abel 7 with predicted label 7 with predicted label 7 with predicted label 7 with predicted label 7 with predicted label 7 with
probability 10000 probability 0.9952  probability 0.9953  probability 0.9911  probability 0.9899  probability 0.9903  probability 0.9853  probability 0.9815  probability 0.9758
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Moving on the data manifold: CIFAR10
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Conclusions

o Using a partially trained model we can construct a low
dimensional submanifold the data leaf of R"” containing the
data the model was trained with.
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dimensional submanifold the data leaf of R"” containing the
data the model was trained with.

@ We can navigate the data leaf and obtain either data or points
with similarities to our data.
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@ Moving orthogonally to the data leaf will add noise to data,
but the model will not change its accuracy.
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© Possible Applications:
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o Using a partially trained model we can construct a low
dimensional submanifold the data leaf of R"” containing the
data the model was trained with.

@ We can navigate the data leaf and obtain either data or points
with similarities to our data.

@ Moving orthogonally to the data leaf will add noise to data,
but the model will not change its accuracy.

© Possible Applications:

e Denoising of images: project a noisy data point on the data
leaf to perform denoising.
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© Possible Applications:

e Denoising of images: project a noisy data point on the data
leaf to perform denoising.

@ Use the distance from the data leaf to recognize out-of-
distribution examples
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Conclusions

o Using a partially trained model we can construct a low
dimensional submanifold the data leaf of R"” containing the
data the model was trained with.

@ We can navigate the data leaf and obtain either data or points
with similarities to our data.

@ Moving orthogonally to the data leaf will add noise to data,
but the model will not change its accuracy.

© Possible Applications:
e Denoising of images: project a noisy data point on the data
leaf to perform denoising.
@ Use the distance from the data leaf to recognize out-of-
distribution examples
o GAN: generate new images with the same label, by moving on
the data leaf.
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Conclusions

o Using a partially trained model we can construct a low
dimensional submanifold the data leaf of R"” containing the
data the model was trained with.

@ We can navigate the data leaf and obtain either data or points
with similarities to our data.

@ Moving orthogonally to the data leaf will add noise to data,
but the model will not change its accuracy.

© Possible Applications:
e Denoising of images: project a noisy data point on the data
leaf to perform denoising.
@ Use the distance from the data leaf to recognize out-of-
distribution examples
o GAN: generate new images with the same label, by moving on
the data leaf.
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Future Directions

We need to understand the geometry and the metric structure of
the data leaf.

@ It not a riemannian and not a subriemannian manifold
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Future Directions

We need to understand the geometry and the metric structure of
the data leaf.

@ It not a riemannian and not a subriemannian manifold

@ The involutive distribution defining the data leaf is not
constant rank: we have a singular foliation!
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Future Directions

We need to understand the geometry and the metric structure of
the data leaf.

@ It not a riemannian and not a subriemannian manifold

@ The involutive distribution defining the data leaf is not
constant rank: we have a singular foliation!

@ What are the geodesics in this geometry? (proto-sub
riemannian geometry)
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Future Directions

We need to understand the geometry and the metric structure of
the data leaf.

@ It not a riemannian and not a subriemannian manifold

@ The involutive distribution defining the data leaf is not
constant rank: we have a singular foliation!

@ What are the geodesics in this geometry? (proto-sub
riemannian geometry)

@ Navigating the data leaf can lead to data augmentation and
efficient denoising algorithms
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