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Introduction to Deep Learning

Deep Learning: Convolutional neural networks.

Deep Learning for Supervised Classification Tasks e.g.
classification of images
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Imagenet Challenge ILSVRC:
ImageNet Large Scale Visual Recognition Challenge

2010 20000 images, 20 categories, 25% error.

2011 1 million images, 1000 categories: 16% error.

2015 1 million images, 1000 categories: 4% error.

2017: the challenge is declared won.
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Images in Imagenet
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Images in Imagenet category “chair”
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Benchmark datasets: MNIST and CIFAR10
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Ingredients for Deep Learning

Score function: it is a function of the weights w (es. linear
classifier)

Loss function: measures error
(Li datum i loss, yi correct label)

Li = −log
efyi∑
j e

fj
= −fyi + log

∑
j

efj , L =
∑
i

Li

Optimizer: for weights update “minimizes” the Loss

wij(t + 1) = wij(t)− α∇ Lstoc, ∇Lstoc =
32∑
i=1

∇Lrand(i)
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Training

Divide the dataset (ex. CIFAR10):
80% Data for training
10% Data for validation
10% Data for test (ONCE)

1 Learning: determine weights parameters

2 Validation: determine net structure.
Example: choose loss function, number of layers, learning rate
Goal: find best hyperparameters.

3 Test: once at the end.

Accuracy: percentage of accurate predictions on tests set.
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Learning process

Step 1: Compute score of images in training set
(Forward pass)
The weights are inizialized randomly.

Step 2: Compute the loss
(i.e. measure the “difference” between given label and correct
label for each datum in training set).

Step 3: Compute Stochastic Gradient. (Backpropagation)

Step 4: update weights.

Step 5: Repeat Step 1-2-3 up to an epoch.

Step 6: After 150-200 epochs reduce learning rate and repeat
all steps 1-5.

Epoch= ∥Training set∥/∥minibatch size∥.
NOTE: measure accuracy every 10-20 epochs.
Example: 40000 training set (CIFAR10), 32 images in minibatch,
1 epoch=40000/32 updates.
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Loss accuracy in epochs: CIFAR10
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Validation process

Purpose of validation: Determine hyperparameters:

α learning rate,

B minibatch size,

optimizer (SGD, Adam),

net structure (e.g. how many layers, parameters)

training (e.g. number of epochs)

We vary hyperparameters giving some values:

e.g. α = 0.1, 00.1 etc

e.g. B = 8, 16, 32

We use the validation set to test accuracy, while searching for
best hyperparameters.
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Test

ATTENTION!: use test set ONCE to avoid overfitting!

Validation technique: cross validation=rotation of the training
set.
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Loss Landscape

Loss (projection) as function of weights.
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Information Geometry

Information Geometry: studies geometrical structures on
manifolds in the parameter space and the data domain.

Amari, S.-I. Natural gradient works efficiently in learning. Neural
computation, 10(2):251-276, 1998.

Amari Loss: I (x ,w) = − log(p(y |x ,w))

Loss function: L(x ,w) = Ey∼q[I (x ,w)]

L(x ,w) = Ey∼q[− log(p(y |x ,w))] = KL(q(y |x)||p(y |x ,w))+constant

p(y |x ,w) = (pi (y |x ,w))i=1,...,C : discrete probability distribution of
data x
q(y |x): mass discrete probability distribution.
C : classification labels y .
w : parameters.
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Loss Function

The empirical Loss function as expected value of the Amari Loss:

L(x ,w) = Ey∼q[− log(p(y |x ,w))] =

=
C∑
i=1

qi (y |x) log
qi (y |x)

pi (y |x ,w)
−

C∑
i=1

qi (y |x) log qi (y |x) =

= KL(q(y |x)||p(y |x ,w))−
C∑
i=1

qi (y |x) log qi (y |x). (1)

The Kullback-Leibler divergence measures the “difference”
between the two probability distributions the “empirical
distribution” p and the “true distribution” q.
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LOSS: Softmax S and Cross Entropy Loss L

L(x ,w) = − log[S(x ,w)] = − log[esyj (x)/(es1(x) + · · ·+ esN(x))]
L(x ,w): loss of datum x with label yj .

Loss = − log(Scat)− log(Shorse)− log(Sdog ) =

= − log(0.71)− log(0.002)− log(0.02) = 0.34 + 6 + 3.91 = 10.25
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The Fisher matrix F and the Local Data Matrix G

F (x ,w) = Ey∼p[∇w log p(y |x ,w) · (∇w log p(y |x ,w))T ]

G (x ,w) = Ey∼p[∇x log p(y |x ,w) · (∇x log p(y |x ,w))T ].

Key Facts:

KL(p(y |x ,w + δw)||p(y |x ,w)) ∼= 1
2(δw)TF (x ,w)(δw) +O(||δw ||3)

KL(p(y |x + δx ,w)||p(y |x ,w)) ∼= 1
2(δx)

TG (x ,w)(δx) +O(||δx ||3)

The Fisher matrix F provides a natural metric on the parameter
space during dynamics of the stochastic gradient descent.
The Local Data matrix G provides a natural metric on the data
domain.
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The local data matrix G during optimization

This is why we do not want a fully trained model: the information
is lost at equilibrium!
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Properties of the Fisher matrix F and local data matrix G

1 F (x ,w) and G (x ,w) is a positive semidefinite symmetric
matrix.

2 ker F (x ,w) = (spani=1,...,C{∇w log pi (y |x ,w)})⊥;
3 kerG (x ,w) = (spani=1,...,C{∇x log pi (y |x ,w)})⊥.
4 rank F (x ,w) < C , rank G (x ,w) < C .

Dataset G (x ,w) size rank G (x ,w) bound
MNIST 784 10
CIFAR-10 3072 10
CIFAR-100 3072 100
ImageNet 150528 1000

C : is the number of classes for our classification task
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The Geometric Structure of Data

Deep Learning and classification tasks:

Data occupies a domain in Rn

(e.g. MNIST in R784, n = 784 = 28× 28 pixels)

The data domain is mostly composed of meaningless noise:
data occupy a thin region of it!

Main result:

1 A partially trained neural network decomposes the data
domain in Rn as the disjoint union of submanifolds (the
leaves of a foliation).

2 The dimension d of every submanifold (every leaf of the
foliation) is bounded by the number of classes C of our
classification model: d << n (e.g. MNIST d = 9 << 784).
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Data leaf versus Noise leaf

The data domain is the disjoint union of subdomains (foliation)
and the training data are all on one leaf.
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Data manifold

Main Result/1. Let w be the weights of a deep ReLU neural
network classifier, p given by softmax, G (x ,w) the local data
matrix.

The distribution in the data domain:

x 7→ Dx = (kerG (x ,w))⊥

is involutive i.e.

[X ,Y ] ∈ D, ∀ X ,Y ∈ D.

Main result/2.
1 At each point in the dataset in Rn, kerG (x ,w)⊥ is tangent to

a submanifold (data leaf) of dimension rank G (x ,w) < C
2 G defines a foliation on Rn of rank at most C − 1 (Frobenius

Thm).

Remark: This is not true for the distribution via the Fisher matrix!

w 7→ D′
w := (ker F (w))⊥

is not involutive (e.g. MNIST, lenet).
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Riemannian Structure on the Data Manifold

Facts

The matrix G (x ,w), restricted to the subspace (kerG (x ,w))⊥

gives a Riemannian metric to each leaf of the foliation.

All the dataset is on one leaf: the data leaf
We perform dimensionality reduction!

We move from a point x in our dataset to any other point x ′

in the dataset with an with an horizontal path, that is a path
on the data leaf.

Not all points on the data leaf are in the data set, but they
represent symbols.
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Moving on the data leaf: MNIST

Moving around in on the data leaf:

We can connect any two data=images.

Any path starting from one image and going to another goes
through data with the same level of noise.

We can connect a digit from MNIST to a symbol not in MNIST
moving on the data leaf:
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Moving away from the data leaf: MNIST

When moving away from a given data leaf, noise is added, but the
accuracy is high.

Rita Fioresi, FaBiT, Unibo Geometric Structure



Moving away from the data leaf: MNIST

When moving away from a given data leaf, noise is added, but the
accuracy is high.

Rita Fioresi, FaBiT, Unibo Geometric Structure



Moving away from the data leaf: MNIST

When moving away from a given data leaf, noise is added, but the
accuracy is high.

Rita Fioresi, FaBiT, Unibo Geometric Structure



Moving on a noisy leaf: MNIST

We can connect a noisy datum with any other datum with the
same level of noise:
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Moving on a noisy leaf: MNIST
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Moving on the data manifold: CIFAR10
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Conclusions

Using a partially trained model we can construct a low
dimensional submanifold the data leaf of Rn containing the
data the model was trained with.

We can navigate the data leaf and obtain either data or points
with similarities to our data.

Moving orthogonally to the data leaf will add noise to data,
but the model will not change its accuracy.

1 Possible Applications:

Denoising of images: project a noisy data point on the data
leaf to perform denoising.
Use the distance from the data leaf to recognize out-of-
distribution examples
GAN: generate new images with the same label, by moving on
the data leaf.
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Future Directions

We need to understand the geometry and the metric structure of
the data leaf.

It not a riemannian and not a subriemannian manifold

The involutive distribution defining the data leaf is not
constant rank: we have a singular foliation!

What are the geodesics in this geometry? (proto-sub
riemannian geometry)

Navigating the data leaf can lead to data augmentation and
efficient denoising algorithms
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