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The Erlangen Programme

F. Klein

“Given a [homogeneous] 
manifold and a 
transformation group acting 
[transitively] on it, to 
investigate those properties of 
figures on that manifold 
which are invariant under 
transformations of that 
group”

1872

Klein 1872
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AffineEuclidean Projective

angle
distance

area
parallelism
intersection

+ — —
+ — —
+ — —
+ + —
+ + +



?



Universal approximation

K. HornikD. Hilbert A. Kolmogorov

Hilbert 1900; Arnold 1956; Kolmogorov 1957; Cybenko 1989; Hornik 1991

V. Arnold G. Cybenko

13th Problem Results specific to multilayer 

neural networks
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Universal approximation

Cybenko 1989; Hornik 1991; Barron 1993; Leshno et al 1993; Maiorov 1999; Pinkus 1999

“A 2-layer perceptron can approximate 
a continuous function to any desired 
accuracy”



{cat,dog}

Deep learning = glorified curve fitting
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⋮ How many samples are needed to 
approximate to accuracy 𝜀 ?

Universal approximation

Cybenko 1989; Hornik 1991; Barron 1993; Leshno et al 1993; Maiorov 1999; Pinkus 1999







First “geometric” machine learning

Minsky, Papert 1969

Group Invariance Theorem: ”if a 
neural network is invariant to a group, 
then its output can be expressed as 
functions of the orbits of the group”

S. PapertM. Minsky

1969



Data

Examples:

• f*(x) : excitation energy of molecule x. 

• f*(x) = P( y=1 |x) : logit in a binary classification task. 

{ 𝑥#,𝑦# }#,𝑤𝑖𝑡ℎ 𝑥 ∈ 𝒳:𝑑𝑎𝑡𝑎 𝑑𝑜𝑚𝑎𝑖𝑛,𝑦 ∈ ℝ

[Goldt, Zdeborova, Krzakala et al]

𝑥#~𝜈: data distribution defined over 𝒳.

𝑦# = 𝑓∗(𝑥#) for some unknown 𝑓∗:𝒳 → ℝ

In order to analyse ML algorithms and provide guarantees, we need 
assumptions on both 𝜈 and 𝑓∗.



Model

• The model or hypothesis class is a subset ℱ ⊂ {𝑓:𝒳 → ℝ}.

• Examples:

• ℱ = { 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑠 𝑜𝑓 𝑑𝑒𝑔𝑟𝑒𝑒 𝑢𝑝 𝑡𝑜 𝑘}

• ℱ = {𝑁𝑒𝑢𝑟𝑎𝑙 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑠 𝑜𝑓 𝑔𝑖𝑣𝑒𝑛 𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒 }

• The hypothesis class is organized in terms of a (non-negative) complexity measure 
𝛾:ℱ → ℝ , e.g. a norm.

• Examples:

• 𝛾 𝑓 : number of neurons in a NN.

• 𝛾 𝑓 = ∫(1 + 𝜔!)"| E𝑓 𝜔 |!𝑑𝜔 Sobolev Norm 

• Remark: Often this complexity γ f is implicitly defined through the algorithm!



Error Metric

• Given point-wise convex error measure ℓ 𝑦,𝑦! , e.g. squared error 
ℓ 𝑦,𝑦! = |𝑦 − 𝑦!|", we consider: 

• Population Loss: ℛ 𝑓 = 𝔼#[ℓ 𝑓 𝑥 , 𝑓∗ 𝑥 ]

• Empirical Loss: Rℛ 𝑓 =
%
&
∑' ℓ (𝑓 𝑥' , 𝑓∗ 𝑥' )

• Fact: for each 𝑓 ∈ ℱ, 6ℛ 𝑓 is an unbiased estimator of ℛ 𝑓 , with 

variance 𝜎" 𝑓 = #

$
𝔼 ℓ 𝑓 𝑥 , 𝑓∗ 𝑥 − ℛ 𝑓

"

• However, this point-wise variance bound is not very useful in ML, since 
hypothesis 𝑓 depends on training set! 

• We use uniform bounds instead, e.g. Rademacher complexities. 



Empirical Risk Minimization

• Underlying Goal: Minimise ℛ 𝑓 having only access to 6ℛ 𝑓 . 

• In order to control fluctuations uniformly, we consider the ball
ℱ& = {𝑓 ∈ ℱ; 𝛾(𝑓) ≤ 𝛿}

• Empirical Risk Minimisation (ERM), constrained form:
@𝑓& = 𝑎𝑟𝑔 min

'∈ℱ!
6ℛ 𝑓

• Penalized form: 𝑎𝑟𝑔min
(∈ℱ

Rℛ 𝑓 + 𝜆𝛾(𝑓)

• Interpolation form: 𝑎𝑟𝑔min
(∈ℱ

𝛾(𝑓) 𝑠. 𝑡. Rℛ 𝑓 = 0.

ℱ%

ℱ

𝛿



f̂

𝜀"#$#

𝜀$%%&

R(f̂)−R(f⇤)

Excess Risk

bR(f) =
1

n

nX

i=1

`(f(xi), yi)

Empirical Loss

R(f) = E[`(f(x), y)]
Population Loss

Fδ = {f = f✓; k✓k  δ}
Hypothesis Class

f̂ = arg min
f2Fδ

R̂(f)

ERM



The Challenge of High-dimensional Learning

ℛ @𝑓 ≤ 𝑖𝑛𝑓'∈ℱℛ 𝑓 + 𝜀-+. + 𝜀/.*. + 𝜀*++,

• 𝑖𝑛𝑓'∈ℱℛ 𝑓 = 0 if ℱ is dense, e.g. neural networks with non-polynomial 
activation (Universal Approximation Theorems). 

• Approximation error 𝜀*++, = 𝑖𝑛𝑓'∈ℱ!ℛ 𝑓 : Small if hypothesis space is 
such that target 𝑓∗ has small complexity. Decreases with 𝛿. 

• Statistical error 𝜀/.*. = 2𝑠𝑢𝑝'∈ℱ!|ℛ 𝑓 − 6ℛ 𝑓 |: small when ℱ& can be 
covered with ‘few’ small balls. Increases with 𝛿.

• Optimization error 𝜀-+. = 6ℛ @𝑓 − 𝑖𝑛𝑓'∈ℱ! 6ℛ 𝑓 small when ERM can be 
efficiently solved. 

[Bottou, Bousquet]

How to simultaneously control all sources of error in the high-dimensional regime? 



Basic Principle of Learning: Interpolation

• Inherent low-dimensional property: based on proximity between 
empirical and population densities. 

• Similarity search / Nearest-Neighbor / Kernel methods. 

How does this learning principle behave in higher-dimensions? 



Learning Lipschitz Functions

• Recall that a function 𝑓:𝒳 ⊆ ℝ0 → ℝ is 𝛽-Lipschitz if |𝑓 𝑥 − 𝑓 𝑥! | ≤
𝛽| 𝑥 − 𝑥! | .

• Regularity class associated with a locality prior.

• Assume 𝑓∗is 1-Lipschtiz, and 𝜈 the 𝒩(0, 𝐼0) distribution. How many 
samples are needed to estimate 𝑓∗ up to error 𝜀?



Summary so far

• Lipschitz class is too large: statistical error cursed by dimension. 

• Smooth Sobolev/Barron classes are too small: approximation error cursed 
by dimension. 

• We need to define more adapted function spaces. How?  



Towards Geometric Function Spaces

• Exploit the underlying low-dimensional structure of the input high-
dimensional space 𝒳:

domain Ω

signals 𝒳 Ω

𝑢

𝑥 𝑢

𝒳



The Space of Signals on a Geometric Domain

• A signal on Ω is just a function 𝑥 ∶ Ω → 𝒞, where:

• Ω is the domain

• 𝒞 is a vector space, whose dimensions are called channels

• The space 𝒞-valued signals on Ω is defined as

𝒳(Ω, 𝒞) = { x : Ω → 𝒞 }

R

G

B

Ω = ℤ! × ℤ! 𝒞 = ℝ"

Example: 𝑛 × 𝑛 RGB image 

C

N

O

Ω = {1,… ,𝑛} 𝒞 = ℝ#

Example: molecular graph



Hilbert Space Structure

• We can add signals and multiply by scalars:

𝛼𝑥 + 𝛽𝑦 𝑢 = 𝛼𝑥 𝑢 + 𝛽𝑦(𝑢),         where 𝛼,𝛽 ∈ ℝ and 𝑢 ∈ Ω

• à The space of signals is a vector space! (possibly infinite dimensional)

• Moreover, given an inner product , 𝒞 on 𝒞 and a measure 𝜇 on Ω, we 
obtain an inner product on 𝒳(Ω, 𝒞):

𝑥,𝑦 = ∫$ 𝑥 𝑢 ,𝑦(𝑢) 𝒞 d𝜇(𝑢).

• à The space of signals is a Hilbert space! 
Verify that the above satisfies the axioms of an inner product

+ =



Fields of Geometric Features

• Function:

• maps 𝑢 ∈ Ω to 𝑥 𝑢 ∈ 𝒞

• Field (“section of a bundle”):

• maps 𝑢 ∈ Ω to 𝑥 𝑢 ∈ 𝒞$

• Where 𝒞$ is a feature space (“fiber”) attached to 𝑢 ∈ Ω

• The feature spaces are assumed to be isomorphic but not identical!

• Only once we choose a way to identify the fibers, we can write a field as a function

A vector field assigns to each 𝑢 ∈ Ω a vector 𝑥 𝑢
in the tangent space 𝒞! = 𝑇"Ω at u.

For simplicity we will only work with function spaces 𝒳(Ω, 𝒞) for now

The tangent space



Symmetries of the Label Function

• Let 𝒳 denote the input space and 𝒴 the label space

• Let 𝐿 ∶ 𝒳 → 𝒴 be the ground-truth label function

• A transformation 𝔤 ∶ 𝒳 → 𝒳 is a symmetry if 𝐿 ∘ 𝔤 = 𝐿

L(                ) = L(               ) = “dog”



Learning Classes ≅ Learning Symmetries

• Any invertible map that respects 
the class boundaries is a symmetry 
of the label function L

• If we knew all the symmetries of L, 
we only need one label per class!

• Explain why

• If the learning problem is non-
trivial, we should not expect to be 
able to find the full symmetry 
group a priori.

𝒳



Symmetries of Ω acting on Signals 𝒳(Ω, 𝒞)

Given an action of 𝔊 on Ω, we automatically obtain an action of on the space of signals 𝒳(Ω) :

𝔤 𝑥 𝑢 = 𝑥(𝔤!"𝑢). 



Linearity of the Group Action on Signals

Action on signals: 𝔤 𝑥 𝑢 = 𝑥(𝔤%&𝑢).
Linearity: 𝔤 𝛼𝑥 + 𝛽𝑦 = 𝛼𝔤𝑥 + 𝛽𝔤𝑦

+ =

+ =

Apply 𝔤 = (𝑡" , 𝑡#)



Group Representations

An n-dimensional real representation of a group 𝔊 is a map 𝜌 ∶ 𝔊 → ℝ(×(, 
assigning to each 𝔤 ∈ 𝔊 an invertible matrix 𝜌(𝔤), and satisfying

𝜌 𝔤𝔥 = 𝜌 𝔤 𝜌 𝔥 , ∀𝔤, 𝔥 ∈ 𝔊

Example: 
• The group 𝔊 = ℤ, +
• The domain Ω = ℤ$ = {0, 1, 2, 3, 4} (e.g. short audio signal)
• The action of 𝔤 = 𝑛 on u ∈ Ω: 𝑛,𝑢 ↦ 𝑛 + 𝑢 (mod 5)
• The representation on𝒳(Ω): (verify that this is a representation)

• Now derive the representation for the group C4 of discrete rotations on a square grid of size 3x3

=
𝜌 𝑛 =

0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

%

𝜌 1



Symmetries: Sets & Graphs

• The group: 𝔊 = 𝕊(, the group of permutations (“symmetric group”)

• The domain: Ω = 𝑉, the set of vertices (and possibly edges)

• Three kinds of graph features (representations of 𝕊():

Maron, H., Ben-Hamu, H., Shamir, N., & Lipman, Y. Invariant and Equivariant Graph Networks. ICLR 2019.
Maron, H., Ben-Hamu, H., Serviansky, H., & Lipman, Y. Provably Powerful Graph Networks. NeurIPS 2019
Kondor, R., Son, H. T., Pan, H., Anderson, B., & Trivedi, S. Covariant Compositional Networks For Learning Graphs, 2018
De Haan, P., Cohen, T., Welling, M., Natural Graph Networks. NeurIPS 2020

Scalar feature
e.g network output in 
graph classification

Vector feature
e.g. one feature 

per node

Tensor feature
e.g. one feature per 
edge or node pair

⇢1(P12)v = P12v ⇢2(P12)M = P12MP
T

12⇢0(P12)s = 1 · s

For each, verify that they are 
group representations



Symmetries of Graphs: Objects & their Descriptions

• A graph (or even a set) is an abstract object

• All we have access to in practice is a description of it in computer memory

• The description has properties (such as order) that are not intrinsic to the object

• Usually we are interested in the symmetries of the description, rather than the 
symmetries of the object itself

1 2 3 4

1

1 1 1

1

1

1 2 3 4

1 1 1

1

1

1

1 2 3 4

1

1 1 1

1

1



Invariant Representations

A A

AA

A A

AA

B B

BB

B B

BB

A

A

B

B



The Problem with Invariance in Deep Learning

• To recognize whole objects, we need to first recognize parts

• This is why neural networks should be deep

• If we make the intermediate representations invariant, we lose critical 
information:

• The relative pose of object parts contains critical information [Hinton]

Original Rotate whole Rotate parts

Hinton et al., Transforming Auto-Encoders, 2011



Equivariant Networks

𝒳!

𝒳"

𝒳#

𝒳$

𝑓"

𝑓#

𝑓$

𝒳!

𝒳"

𝒳#

𝒳$

𝑓"

𝑓#

𝑓$

𝜌! 𝔤

𝜌" 𝔤

𝜌# 𝔤

𝜌$ 𝔤 Ingredients:

• Feature vector spaces 𝒳%

• Maps 𝑓% between them (“Layers”)

• A symmetry group 𝔊

• Group representations 𝜌% of 𝔊 for each 𝒳%

Equivariance
𝑓N ∘ 𝜌NOP 𝔤 = 𝜌N 𝔤 ∘ 𝑓N

Wood, J., & Shawe-Taylor, J. (1996). Representation theory and invariant neural networks. Discrete Applied Mathematics , 69(1), 33–60.

Show that if 𝑓% are all equivariant, so is their composition



Translation Equivariance in CNNs



Rotation Equivariance in CNNs

CNN

G-CNN

Show that convolution 
is translation 
equivariant, but not 
rotation equivariant.

Graphics courtesy of Gabriele Cesa



A

A

Equivariance as Symmetry-consistent generalization

Feature space

Input space

A

A

A

x

y

Equivariance: 𝑓 𝜌-*+ 𝔤 𝑥 = 𝜌- 𝔤 𝑓 x

This cannot happen!
Equivariant net must generalize 

consistently across the whole orbit.

𝑓 𝑥 = 𝑓(𝑦) 𝜌S 𝔤

𝜌N 𝔤 𝑥

𝜌N 𝔤 𝑥



Equivariance vs Data augmentation

Property Train 
augmentation

Test 
augmentation

Equivariance

Layerwise or whole-net constraint Whole-net Whole-net Layerwise

Easy to implement, simple

Guaranteed in/equivariance at training data

Guaranteed in/equivariance at test data

Works for large (e.g Sn) / infinite (e.g. SE(n)) groups

Efficient at train time

Efficient at test time



Invariant Function Classes

• ML Goal: Learn an unknown function 𝑓∗:𝒳 → ℝ

• Recap: Our input space is `opened’ as 

• Geometric domain Ω defines transformations 𝔤 ∶ Ω → Ω

• Examples:

• Transformations form a Group 𝔊 by composition.

𝒳 = 𝑥:Ω → 𝒞

domain Ω

signals 𝒳 Ω

𝑢

𝑥 𝑢

Permutation Euclidean isometry Diffeomorphism of ℝ!



Invariant Function Classes

• These domain transformations are lifted to linear transformations (a.k.a. 
group representations):

𝔤 𝑥 𝑢 = 𝑥(𝔤"#𝑢)

𝔤 ∶ Ω → Ω 𝔤 ∶ 𝒳(Ω) → 𝒳(Ω)



Invariant Function Classes

• Recall our learning setup: 

• 𝑓∗:𝒳(Ω) → ℝ unknown function to be learnt.

• ℱ: hypothesis class (parametrized e.g. with neural nets). 

• Promise: 𝑓∗ is 𝔊-invariant: 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝒳 Ω , 𝔤 ∈ 𝔊, 𝑓∗ 𝔤. 𝑥 = 𝑓∗ 𝑥

• Under this promise, we may ask:

1. How to leverage it in our hypothesis class? 

2. It it generally sufficient to break the curse of dimensionality? 



Invariant Function Classes

• We may first consider an abstract (non-algorithmic) option, using 𝔊-
smoothing operators:

• Assume for simplicity 𝔊 is a discrete, finite group. We define

𝑆𝔊𝑓 ≝
1
𝔊
-
𝔤∈𝔊

𝑓 ∘ 𝔤
𝑆𝔊𝑓 𝑥 =

1
𝔊
-
𝔤∈𝔊

𝑓(𝔤. 𝑥)

Group Orbits 𝔊. 𝑥 = 𝔤. 𝑥; 𝔤 ∈ 𝔊

𝑆𝔊 thus averages a 
function over group 
orbits. 

Observe that 𝑆𝔊𝑓∗ = 𝑓∗.



Invariant Function Classes

• Given a hypothesis class ℱ, we can make it 𝔊-invariant by applying the 
group smoothing operator:  

𝑆𝔊ℱ ≝ 𝑆𝔊𝑓; 𝑓 ∈ ℱ



Learning under Invariance

• Approximation error not affected by 𝔊-smoothing:

• Statistical error reduced..

• .. But by  how much?  

𝑖𝑛𝑓,∈ℱ 𝑓 − 𝑓∗ / = 𝑖𝑛𝑓,∈0𝔊ℱ 𝑓 − 𝑓∗ /

𝑓 − 𝑔 ! = 𝑆𝔊𝑓 − 𝑆𝔊𝑔 ! + (𝐼 − 𝑆𝔊)𝑓 − (𝐼 − 𝑆𝔊)𝑔 !

Indeed, 𝑆𝔊ℱ is an orthogonal projection operator in 𝐿!(𝒳)

𝑓 − 𝑓∗ ! = 𝑆𝔊𝑓 − 𝑓∗ ! + (𝐼 − 𝑆𝔊)𝑓 !



On the Sample Complexity of Learning under Invariance

• We can consider, as before, the Lipschitz class ℱ, and its 𝔊-smoothed 
version.

𝑓 ∈ ℱ: 𝑓 𝑥 − 𝑓(𝑥#) ≤ 𝛽 𝑥 − 𝑥′ ;  𝑓 ∈ 𝑆𝔊ℱ: 𝑓 𝑥 − 𝑓(𝑥#) ≤ 𝛽𝑖𝑛𝑓𝔤 𝑥 − 𝔤. 𝑥′

• Theorem [BVB’21]: Using a 𝔊-invariant kernel ridge regression, the 
generalization error of learning a Lipschitz, 𝔊-invariant function 𝑓∗ satisfies

• Group size 𝔊 can be exponential in dimension (local translations, or 𝒮# ).

• Rate is still cursed – indicating that group invariance is insufficient. 

• Gains are sharp w.r.t. non-invariant kernel [Caponetto & DeVito]

[Mei, Misiakiewicz, Montanari, 21][Bietti, Venturi, B.’21]

𝑥

𝑥′

𝑥′

𝔼ℛ( ;𝑓) ≲ 𝔊 𝑛
"#
$



Conclusions so far

• Known global symmetries: using them in our hypothesis class is a no-
brainer: guaranteed improvements in sample complexity.

• However, two important issues remain:

1. Likely not sufficient to break the curse of dimensionality. What is missing?

2. How to build such invariant classes efficiently? From first-principles? 



Deep Learning “Inductive Bias”: Compositionality

Yoshua Bengio

Yann LeCun

Deformable Parts 
Model, Felzenswalb et al.

How to formalize this intuition? 



Multiscale Structures: Prevalent Across Science



Basics of Multiresolution Analysis

• For simplicity, fix Ω to be a 2D-grid. 

• Roughly speaking, a Multiresolution Analysis (MRA) decomposes a signal 
𝑥 ∈ 𝐿%(Ω) in terms of 

• a signal V𝑥 ∈ 𝐿'(YΩ) defined on a coarser grid YΩ, and 

• details at resolution Ω needed to reconstruct 𝑥 from V𝑥.

• An MRA can be implemented with a wavelet filter bank [Meyer, Mallat], cf
Lecture 7. 

• Key property: filters are localized in space. 

• Fundamental tool in signal processing that complements Fourier analysis, 
widespread applications (compression, denoising, inverse problems).

What is the link with our high-dimensional learning problem? 



Scale Separation Prior

• Suppose first that the unknown target 𝑓∗ is such that 𝑓∗ 𝑥 ≈ ?𝑓∗( @𝑥); e.g.

;𝑥

𝑓∗ 𝑥 = 𝑃 𝑦 = {:𝑏𝑒𝑎𝑐ℎ:,:𝑚𝑜𝑢𝑛𝑡𝑎𝑖𝑛:} 𝑥)

Coarse scales dominate 



Scale Separation Prior

• Suppose first that the unknown target 𝑓∗ is such that 𝑓∗ 𝑥 ≈ ?𝑓∗( @𝑥); e.g.

• Since dim 𝒳 ∝ Ω and EΩ ≪ Ω , coarsening reduces curse of 
dimensionality in this case. 

• Strong assumption in general:

• Fine-scale details are necessary!

𝑓∗ 𝑥 = 𝑃 𝑦 = {:𝑏𝑒𝑎𝑐ℎ:,:𝑚𝑜𝑢𝑛𝑡𝑎𝑖𝑛:} 𝑥)



Scale Separation Prior

• Alternatively, suppose target 𝑓∗ is such that 𝑓∗ 𝑥 ≈ ∑&𝑔 𝑥& . 𝑥(: image patch 
centered at 𝑢.  

Local scales dominate 



Scale Separation Prior

• Alternatively, suppose target 𝑓∗ is such that 𝑓∗ 𝑥 ≈ ∑&𝑔 𝑥& .

• In that case, curse is also avoided, since relevant dimension is the patch
dimension [Favero et al’21,Bietti’22].

• Local Markov Random Fields, weakly interacting systems. 

• Strong assumption in general:

𝑥(: image patch 
centered at 𝑢.  

[Turk,’01]



Scale Separation Prior

• More generally, we consider a compositional model of the form

• Both 𝑃 and ?𝑓 learnt and non-linear. 

• When is composition more efficient? 

𝒳(Ω,𝒞) 𝒳(=Ω, ;𝒞) ℝ

Non-linear 
local 
coarsening

𝑃 ;𝑓

Non-linear 
hypothesis



Benefits of composition

[Telgarsky,’15] [Cohen&Shashua’16][Poggio] 

• Provable approximation, computational & estimation benefits in specific 
contexts. 

• General structure of multiscale hypothesis space ℱ still poorly understood
theoretically. 

• Yet, combining scale separation with 𝔊-symmetry prior gives powerful 
model from first-principles. 



Combining Invariance with Scale Separation

• Function Hypothesis wish-list: 𝔊-invariant, multiscale structure, rich 
approximation. 

• Architecture built from first-principles that satisfies these? 

• Start with linear 𝔊-invariants: How many are there? 

• 𝑓 𝑥 = '

𝔊
∑𝔤 𝑓(𝔤. 𝑥) = 𝑓

'

𝔊
∑𝔤 𝔤. 𝑥 = 𝑓(�̅�)

• Group average 𝐴𝑥 ≝ �̅� = '

𝔊
∑𝔤 𝔤. 𝑥

• Loses a lot of information!

• How to complement? 

�̅�: average over orbit



Combining Invariance with Scale Separation

• Consider instead linear 𝔊-equivariants: if 𝔊 is acting on both 𝒳 and 𝒴, a 
mapping 𝐵:𝒳 → 𝒴 is 𝔊-equivariant if for all 𝔤 ∈ 𝔊, 𝑥 ∈ 𝒳,

• We will see many examples throughout the course (convolutions, graph 
diffusions, etc.)

• How to extract invariants from equivariant features?

• Directly composing a linear equivariant with linear invariant does not 
work (why?). 

• Alternative? 

𝐵 𝔤. 𝑥 = 𝔤.𝐵(𝑥)



Combining Invariance with Scale Separation

• Introduce an element-wise non-linear function:

• Composing a linear 𝔊-equivariant 𝐵 with an element-wise non-linear 
function 𝝆 yields a non-linear 𝔊-equivariant O𝐵 = 𝝆 ∘ 𝐵

• Moreover, if 𝐵 is local, O𝐵 is also local.  

𝝆:𝒳 → 𝒳,𝑤𝑖𝑡ℎ 𝝆𝑥 𝑢 = 𝜌(𝑥 𝑢 )



The Geometric DL Blueprint

• This suggests a constructive approach to build rich invariants with
multiscale structure, with building blocks:

• Linear 𝔊-equivariant layer 𝐵 ∶ 𝒳 Ω, 𝒞 → 𝒳(Ω', 𝒞'), satisfying 𝐵 𝔤. 𝑥 = 𝔤.𝐵(𝑥) for all 𝔤 ∈
𝔊 and 𝑥 ∈ 𝒳(Ω, 𝒞).

• Nonlinearity 𝜎 ∶ 𝒞 → 𝒞′ applied element-wise as 𝝈 𝑥 𝑢 = 𝜎(𝑥 𝑢 ).

• Local pooling (coarsening) 𝑃 ∶ 𝒳 Ω,𝒞 → 𝒳(Ω),𝒞), such that Ω) ⊆ Ω.

• 𝔊-invariant layer (global pooling) 𝐴 ∶ 𝒳 Ω,𝒞 → 𝒴, satisfying 𝐴 𝔤. 𝑥 = 𝐴 𝑥 for
all 𝔤 ∈ 𝔊 and 𝑥 ∈ 𝒳(Ω,𝒞).

• These blocks can be defined under very mild conditions on the geometric 
domain Ω.



The GDL Blueprint



The GDL Blueprint

Architecture Domain Ω Symmetry Group 𝕲

CNN Grid Translation

Spherical CNN Sphere / SO(3) Rotation SO(3)

Intrinsic / Mesh CNN Manifold Isometry Iso(Ω) /
Gauge Symmetry SO(2)

GNN Graph Permutation Σ>
Deep Sets Set Permutation Σ>
Transformer Complete Graph Permutation Σ>
LSTM 1D Grid Time warping


