
The Geometry of Deep Learning.

Lecture 3: Geometric Deep Learning

Rita Fioresi

Course for PhD Program of Unimore, Ferrara and Parma

February 7, 2023

Graph Neural networks

Graph Neural Networks

Main References:

Stanford course CS224w by Leskovec:
http://cs224w.stanford.edu/

Bronstein et al.
Geometric deep learning: going beyond Euclidean data,
https://arxiv.org/abs/1611.08097

Recall: Deep Learning ingredients

Score function: it is a function of the weights w (es. linear classifier)

Loss function: measures error (Li loss of datum i)

Li = −log
efyi

∑

j e
fj
= −fyi + log

∑

j

efj , L =
∑

i

Li

Optimizer: for weights update “minimizes” the Loss (via stochastic
gradient).

wij(t + 1) = wij(t)− α∇ Lstoc, ∇Lstoc =

32
∑

i=1

∇Lrand(i)

Graph Neural Networks GNN: Overview

Geometric Deep Learning: Bronstein et al, 2016.

Do convolutions on graphs (called “non euclidean domains”)

Manipulate complex and heterogeneous datasets
(beyond image recognition)

Effectively work on 3D images

Example: Social network as graph

GNN: Supervised Classification problems

GNN are more versatile in classification tasks. Here are some possibilities:

Many graphs. We have homogeneous data coming in the form of
graphs each coming with a label. Goal: predict the labels.
Example: classification of proteins (label: enzymes or not enzymes).
Each datum is a protein represented with a graph.

One graph. We have a unique graph, we want to classify either
nodes (which may also be heterogeneous) or graph links (edges).
Example: a social network. Nodes=people, Link=friendship.
1) We want to predict the links of a given node.
2) We want to predict if a node is or is not a celebrity.
Nodes come with features that help to understand the similarity

between two nodes.

In this talk we only take into exam the one graph case anche only the
node classification problem.

GNN for node classification

Goal: We have a graph, we know the label of some nodes, we want to
understand the labels of all nodes.

Steps in GNN learning process

A GNN consists of the following steps:

Encoding: realize a (low) dimensional embedding of the graph.
Typically via a set of learned convolutional layers.

Decoding: from the embedding we compute a SCORE

Typically via a learned linear layer.

Loss function (same idea as DL)

Optimizer (same idea as DL)

Once score, loss and optimizer are given, the training, validation and step
take place in the same way as in Deep Learning algorithm.

Graph representation learning

Describes how to learn node and graph embeddings for a given task.
(Example: node classification).

Encoder-decoder framework:

Encoder: produces an embedding of a graph in a low dimensional
space (keeping track of features!)

Decoder: predicts the score based on embedding to match node
similarity

GNN study: Zachary Karate Club

Main reference:

Kipf, Thomas N; Welling, Max (2016) Semi-supervised classification
with graph convolutional networks”. International Conference on
Learning Representations. 5 (1): 61–80. arXiv:1609.02907

Encoding of the Zachary Karate club:

Setting: 1 graph, each node has a label in {0, 1, 2, 3}
Features for each node: vector of 34 coordinates.

We map the graph into the plane each node corresponds to a point:

Important: nodes that are “near” in the graph correspond to points
which are “near” in the plane. The encoding function:

f : Zachary graph −→ R
2

GNN Zachary Karate club

Implementation via Colab: GNN structure

GCN(
(conv1): GCNConv(34, 4)
(conv2): GCNConv(4, 4)
(conv3): GCNConv(4, 2)







ENCODER

(classifier): Linear(2, 4)) } DECODER

34: dimension of features vector
2: dimension of encoding space, f : R34 −→ R

2 encoding function

4: predicting labels, s : R2 −→ R
4 score function, correct label is

assigned to the highest value (e.g. s(v) = (34, 5, 76, 1) gives label 2 in
{0, 1, 2, 3}).

Message passing and convolutions

Main References:

Stanford course CS224w by Leskovec:
http://cs224w.stanford.edu/

Kipf, Thomas N; Welling, Max (2016) Semi-supervised classification
with graph convolutional networks”. International Conference on
Learning Representations. 5 (1): 61–80. arXiv:1609.02907

Convolutions and node classification

Classification label of a node v in graph neural network G may depend on:

Features of v

Labels of the nodes in v ’s neighborhood (topology of G)

Features of the nodes in v ’s neighborhood (topology of G)

Assumption: topology matters! i.e. link occurs between nodes that have
common/similar features. If not: impossible to classify!

red: label 0
green: label 1
Classification Problem: give a label to gray vertices.

Convolutions on Graphs

Convolutions on Graphs are more complicated with respect to images or
text (or DNA analysis)

Topology matters! The neighbourhood of different points are different.
It is not possible to perform a convolution using kernels=filters as in the
images setting.

Message passing

The mechanism of message passing is an approximation of the
mathematical operation of convolutions on graph (Spectral methods):

The operation of message passing in practice

h
(k)
v : the hidden representation of node v at layer k

Wk : weight matrix for neighborhood aggregation (Bk : bias).
Important: Message passing and neighbor aggregation in graph
convolution networks is permutation equivariant.

Example: Zachary Karate club

Zachary Karate club: encoding mechanism via message passing

(conv1) : GCNConv(34, 4) h
(0)
v = z0 7→ h

(1)
v

(conv2) : GCNConv(4, 4) h
(1)
v 7→ h

(2)
v

(conv3) : GCNConv(4, 2) h
(2)
v 7→ h

(3)
v = zv

W 1 is a 34× 4 weight matrix (same for ALL nodes)
W 2 is a 4× 4 weight matrix (same for ALL nodes)
W 3 is a 4× 2 weight matrix (same for ALL nodes)
Here K = 3: number of layers.

Zachary Karate club: Training, validation, test

Training+Validation: 4 randomly chosen nodes

Test: 30 nodes

Accuracy: 71% on 4 classes

GAT, case study: Cora dataset

Main References

Stanford course CS224w by Leskovec:
http://cs224w.stanford.edu/

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Liò, Yoshua Bengio
Graph Attention Networks, 2018
https://arxiv.org/abs/1710.10903

Graph Attention

Goal: Specify arbitrary importance to different neighbors of each node in
the graph.

Idea: Compute embedding of each node (these are the embedded features
h(ℓ) in the graph following the attention strategy a : RF × R

F −→ R:

Nodes get their neighborhoods message via the function a.

This implicitly specifies different weights to different nodes in a
neighborhood.

Graph Attention

Goal: Specify arbitrary importance to different neighbors of each node in
the graph.

Idea: Compute embedding of each node (these are the embedded features
h(ℓ) in the graph following the attention strategy a : RF × R

F −→ R:

Nodes get their neighborhoods message via the function a.

This implicitly specifies different weights to different nodes in a
neighborhood.

Graph Attention

Goal: Specify arbitrary importance to different neighbors of each node in
the graph.

Idea: Compute embedding of each node (these are the embedded features
h(ℓ) in the graph following the attention strategy a : RF × R

F −→ R:

Nodes get their neighborhoods message via the function a.

This implicitly specifies different weights to different nodes in a
neighborhood.

GAT: Graph Attention Networks

We modify the message passing into the Encoder part creating a new
“convolution” method.

Attentional Layer

a : RF × R
F −→ R, eij := a(Whi ,Whj) attention coefficients

eij : measure the importance of node j ’s features to node i
a: scalar product or another learned function

We normalize the eij with softmax:

αij =
exp(eij)

∑

k∈Ni
exp(eik)

Ni : neighbourhood of vertex i .

Attention mechanism

Message passing vs Attention

The feature at step ℓ:

(1) h
(ℓ)
v = σ(

∑

u∈N

W (ℓ) h
(ℓ−1)
u

N (u)
) versus (2) h

(ℓ)
v = σ(

∑

u∈N

αvuW
(ℓ)h

(ℓ−1)
u)

1 Message passing: the information is coming uniformely from the
neighbouring nodes.

2 Attention mechanism: the information focuses on the importance
of the information (features) of neighbouring nodes, encoded in the
function αij .

Example: The Cora Dataset

The Cora Dataset consists of:

Nodes: 2708 scientific papers

Features: each node is equipped with 1433 features. h(0) ∈ R
1433 is a

vector with entries 0 or 1. Each coordinate is assigned 1 if the
corresponding key word appears in the paper, 0 if not.

Edges: two nodes (papers) are connected if one of the two cites the
other (the graph is nevertheless undirected).
There are 10556 edges.

Node labels: {0, . . . , 5} correspond to a paper belonging to a certain
category or another (i.e. ML, MAT, PHYS, etc).

Training nodes: 140 chosen randomly.
Test accuracy: 95% (test size: 140)

