The Geometry of Deep Learning.

Lecture 2: Deep Learning

Rita Fioresi

Course for PhD Program of Unimore, Ferrara and Parma

February 1, 2023

Deep Learning: CS231 Stanford

CS231n: Convolutional Neural Networks for Visual Recognition
Spring 2020

Previous Years: [Winter 2015] [Winter 2016] [Spring 2017] [Spring 2018] [Spring 2019]

horse
deer
fruck
bird

airplane

Stanford CS231

http://cs231n.stanford.edu/

Ingredients for Deep Learning

@ Score function: it is a function of the weights w (es. linear classifier)

02 |-05| 0.1 | 20
15|13 | 21 | 0.0
—— 0 [025] 02 |-03

input image

stretch pixels into single column

-96.8 | catscore

437.9 dog score

61.95 ship score

f(@s; W,b)

@ Loss function: measures error (L; loss of datum i)
f'

Li :—/ogZ +IogZeJ L=> "L
.I i

@ Optimizer: for weights update “minimizes” the Loss
(via stochastic gradient):

32

WU(t + 1) = ij(t) —aV LS‘DOC’ vLs‘coc = Z vLrand(i)
i=1

Divide the dataset (ex. CIFAR10):
80% Data for training

10% Data for validation

10% Data for test (ONCE)

© Learning: determine weights parameters

@ Validation: determine net structure.
Example: choose loss function, number of layers, learning rate etc.
Goal: find best hyperparameters.

© Test: once at the end.

Accuracy: percentage of accurate predictions on tests set.

1. Learning process

@ Step 1: Compute score of images in training set (Forward pass)
The weights are inizialized randomly.

@ Step 2: Compute the loss (it measure the “difference” between given
label and correct label for each datum in training set).

Step 3: Compute Stochastic Gradient. (Backpropagation)
Step 4: update weights.
Step 5: Repeat Step 1-2-3 up to an epoch.

Step 6: After 150-200 epochs reduce learning rate and repeat all
steps 1-5.

Epoch= || Training set||/||minibatch size||.

NOTE: measure accuracy every 10-20 epochs.

Example: 40000 training set (CIFAR10), 32 images in minibatch, 1
epoch=40000/32 updates.

Loss accuracy in epochs: CIFAR10

loss

low learning rate

good learning rate

Loss accuracy in epochs: MNIST

Loss (from epoch=0 to epoch=1000)
n=0.01 [n=0.001 [n=0.0001

04

03

Loss

02

Epochs

2. Validation process

Purpose of validation: Determine hyperparameters:
@ « learning rate,
@ B minibatch size,
@ optimizer (SGD, Adam),
@ net structure (e.g. how many layers, parameters)
@ training (e.g. number of epochs)
We vary hyperparameters giving some values:
o eg. a=0.1,00.1 etc
@ eg. B=2816,32
We use the validation set to test accuracy, while searching for best
hyperparameters.

ATTENTION!: use test set ONCE to avoid overfitting!

A D
accuracy training accurac

validation accuracy:
little overfitting

validation accuracy: strong overfitting

epoch

Validation technique: cross validation=rotation of the training set.

Loss Landscape

Loss (projection) as function of weights.

The Deep Learning Algorithm in more detail

© Score function

(convolutions)
@ Loss function

(ex.: cross entropy with softmax)
© Optimizer

(example: stochastic gradient)

1. SCORE function: Convolutional Neural Networks

Convolutions: extract features from images.
Represent the mathematical operation of discrete convolutions via kernels
(here called filters).

Input image

Filter bank (to be learned) Feature maps

Convolutions and “edge detection”

w[w[w[o]o]o

10(10]10|0]o0]0 NEIEIE

0[w0]w0|o|o]o Alel o [0 |00

10|10/10]0]0]|0 * ol [s = ol | |0

10[w|w0|o|o]|o0 ot NEIEIE

10(/10|10{0]|0f0 3x3 -
6x6

Convolutions

https://cs231n.github.io/convolutional-networks/

Convolutional Neural Network

Low-Level| |Mid-Level| [High-Leve! Trainable
- _— i
Feature Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013

The algorithm learns filters!
https://arxiv.org/abs/1711.08856

Maxpool filter

Input Image

Max pooling

1220 (30| 0
8 (121 2 | 0 | 2x2Max-Pool |20 |30
34 | 70 | 37 | 4 e 37
112|100 25 | 12

Example of Deep Learning Neural Network

A typical network structure (alexnet):

nvolutior faxPool
T Convolution MaxPool Linear
P VN Ve N
¥ / e
a ® = E mﬂ}‘ y / 3 >
b 25:‘5 256 256 #e </ utput
Classification accuracy:
Training | Exact match Nearest match

Short 93.79 £ 0.76% | 99.85 £ 0.11%
Long 95.10 £ 0.19% | 99.84 £ 0.05%

Practical use: Colon Cancer Detection

Optical images with Leica IRBE, CCD Rising Tech, 20X magnification.
200 patients (1998-2008).

Adenoma Carcinoma

Data Normal | Preneo | Adenoma | Cancer | Total
Train 1616 1628 2736 2968 8048
Validate | 200 204 344 256 1004
Test 200 204 340 256 1000

2. LOSS function

Deep Learning uses the Cross Entropy Loss:

L(w) = ZL x, w) Zlog[eslabe' (x)/(€20) 4 .. 4 0]

L(x): loss for image x.
More generally:

@ Amari loss: /(x,w) = —log(p(y|x, w))
o Empirical loss: L(x,w) = E,p[—log(p(y|x, w))], where
L(x, w) = Bynpl=log(p(ylx, w))] = = D pilylx, w) log(pi(y|x, w))

In Deep Learning p(y|x, w) is obtained via Softmax:

esi(x)
p(ylx,w) = (pi(y|x, w)) = (W)

Softmax and Cross Entropy Loss/1

Softmax

Samples Logits

4 2 goftmax 0.71: 026 0.04

002 000 098

049 049 0.02

Input Layer €R™ Hidden Layer € R® Output Layer € R

S=——S _—om
@)= Erere

Hence:

p(cat) = (e° e e?)

e5+e4+e2 9 e5+e4+e2 9 e5+e4+e2

= (0.71,0.26,0.04)

Loss(cat) = — log(p(cat)) = 0.34 choose correct label (here “cat”)!

Softmax and Cross Entropy Loss/?2

Logits

2 goftmax 0.71: 026 0.04
2 8 002 000 098

4 1 049 049 0.02

Input Layer €R™ Hidden Layer € R® Output Layer € R

3
e

=071
et +e?

S =

Loss of one image:
L(x) = — log[eStareitd (x) /(e1) 4 .. 4 eW))]: loss for image x.
Total loss: sum over all images

Loss = —log(p(cat)) — log(p(horse)) — log(p(dog)) =

= —log(0.71) — log(0.002) — log(0.02) = 0.34 + 6 + 3.91 = 10.25

KL Divergence

Kullback-Leibler divergence measures the “difference” between the correct
distribution g(x) and the empirical one p(x):

KL(p(x)llq(x)) = Eqlp] = >_ qi(x) log(pi(x)) =
= q1(x) log(p1(x)) + q2(x) log(p2(x)) + -+ - + qn(x) log(pn(x))
Previous example:
x = cat — p(x) = (0.71,0.26,0.04), q(x) =(1,0,0)

KL(p(x)[lq(x)) = 1-1log(0.71) + 0 - log(0.002) + 0 - log(0.02) = 0.34

This is the loss function (for image="cat")!

Loss and KL Divergence

The loss function is the Kullback-Leibler divergence up to a constant:

L(x, W) = Eyq[—log(p(y|x, W))] =

= Z gi(y|x) log p,(zly\y‘ x) Z qi(y[x) log qi(y|x) =

= KL(q(y[x)llp(y|x, w)) — Z qi(y|x) log gi(y|x). (1)

q(y|x): true distribution (ex.: mass density distribution)
p(y|x, w): empirical distribution
Notice: L(x, w) = KL(a(y1x)llp(y|x, w).

when g(y, x) is the mass density distribution i.e.
q(y|x) =(0,0,...,1,...,0,0)

3. OPTIMIZER

Principal optimizers:
@ Stochastic Gradient
@ SGD with Nesterov momentum
@ ADAM (more popular)

Careful: read all options and make sure you understand them!

Regularization: add regularization to the loss to keep your parameters
from getting too large (default is zero!).
Example: [? regularization, A regularization parameter.

L(w) = %ZL(X"’W) FAY I

The Fisher Information matrix

Information Geometry: use of differential geometry to study probability
and statistics.

Key idea: the parameters of a probability distribution are a manifold and
possess a natural metric (Fisher).

F(x, w) = Eyp[Vy log p(y|x, w) - (V. log p(y|x, w))]

References

@ Shun-ichi Amari, Natural Gradient Works Efficiently in Learning,
1998.

o F. Nielsen, An Elementary Introduction to Information Geometry,
Entropy, 2020.

@ J. Martens. New insights and perspectives on the natural gradient
method. Journal of Machine Learning Research, 21(146):1-76, 2020.

Properties of the Fisher matrix

Proposition. F is the covariance matrix of the gradient of the Amari loss.
Proof. In fact, the Amari loss is /(x, w) = —log p(y|x, w), its gradient is

VWP(Y‘X’ W)

Vulbow) = == 0 ow)

Properties of the Fisher matrix

Proposition. F is the covariance matrix of the gradient of the Amari loss.
Proof. In fact, the Amari loss is /(x, w) = —log p(y|x, w), its gradient is
VWI(X, W) — _va(y‘X? W)

p(ylx, w)
Notice:

IEywp(vwl) = Zpi% =

=2 iVwpi=Vu(>_;pi) =0

Properties of the Fisher matrix

Proposition. F is the covariance matrix of the gradient of the Amari loss.

Proof. In fact, the Amari loss is /(x, w) = —log p(y|x, w), its gradient is

_ Vup(ylx,w)
Valbow) = == e w)

Notice: _—
Eynp(Vwl) =3 pi—2P =

=2 iVwpi=Vu(>_;pi) =0

The covariance matrix of V,,/(x, w) is (by definition):
Cov(l) = Eypl(Val — By p(Tu)) (Tl — Byep(Tu)] =

= Eyp[(Vw) (V)] = F(x, w)

Hessian Geometry

Proposition. F =E, ,[H(/)], | = —log p(y|x, w).
Proof. In fact (write p = p(y|x, w)):

H[I] = —Jac [%] = - [H(P) -p+ va . va] %

Take the expected value:

Hessian Geometry

Proposition. F =E, ,[H(/)], | = —log p(y|x, w).
Proof. In fact (write p = p(y|x, w)):

H[I] = —Jac [%] = - [H(P) -p+ va . va] %

Take the expected value:

H(p,') Vwp Vup
Epr[H[/]] = —ZP,‘ o +E,p [T . T - F

i

where 3, H(p;) = H(3_; pi) = 0.

The Fisher matrix

The Fisher matrix for a minibatch of ONE sample image:

F(x,w) =Ey~p[Vwlogp(y|x,w) - (V. logp(ylx,w))T]

Key Facts:
KL(p(ylx, w + ow)|lp(y|x, w)) 2 3(0w) T F(x, w)(dw) + O(|[ow|]*)

The Fisher matrix F provides a natural metric on the parameter space
during dynamics of the stochastic gradient descent.

rank(F) < number of classes

The metric is neither Riemannian nor subriemannian.
Not constant rank either!

Idea. Treat weights w and images x on the same ground:

F(x;w) = Eyup[Viwlog p(ylx, w) - (Vi log p(y|x, w))T]
G(x,w) =E,p[Vxlogp(ylx,w) - (Vxlogp(y|x,w))T].
Key Facts:

KL(p(ylx, w + dw)lIp(y|x, w)) = 3(0w)TF(x, w)(dw) + O(||ow]*)

KL(p(ylx + dx, w)llp(ylx. w)) = 3(6x)7 G(x, w)(0x) + O(||ox|]*)

Properties of the Fisher matrix F and local data matrix G

©Q F(x,w) and G(x,w) is a positive semidefinite symmetric matrix.
@ ker Fx,w) = (spaniy_ (Vi log pilylx.)]}

@ ker Glx, w) = (span_y.._c{V log pilyx, w) 1)
Q rank F(x,w) < C, rank G(x,w) < C.

Dataset G(x,w) size rank G(x,w) bound

MNIST 784 10
CIFAR-10 3072 10
CIFAR-100 3072 100
ImageNet 150528 1000

For the Fisher the difference in size and rank is larger!

Data manifold

Result (F.-Grementieri, 2021). Let w be the weights of a deep RelLU
neural network classifier, p given by softmax, G(x, w) the local data
matrix.

The distribution in the data domain:

x = Dy = (ker G(x, w))*

is involutive i.e.
[X,Y] €D, VX, YeD.

@ At each point in the dataset in R”, ker G(x, w)" is tangent to a
submanifold (data leaf) of dimension rank G(x,w) < C

© G defines a foliation on R” of rank at most C — 1 (Frobenius Thm).

Remark: This is not true for the distribution via the Fisher matrix!
w i Dl = (ker F(w))*

is not involutive (e.g. MNIST, lenet).

N -

N 7
,/4

a noise leaf

data leaf

X

S1512]2[2]2][2]2[2]2]

z

Riemannian Structure on the Data Manifold

Facts

@ The matrix G(x, w), restricted to the subspace (ker G(x, w))! gives a
Riemannian metric to each leaf of the foliation.

@ All the dataset is on one leaf: the data leaf
We perform dimensionality reduction!

@ We move from a point x in our dataset to any other point x” in the
dataset with an with an horizontal path, that is a path on the data
leaf.

@ Not all points on the data leaf are in the data set, but they represent
symbols.

Moving on the data leaf: MNIST

Moving around in on the data leaf:
@ We can connect any two data=images.

@ Any path starting from one image and going to another goes through
data with the same level of noise.

Iteration 1250 Iteration 1875 Iteration 2500 Iteration 3125 teration 3750 teration 4375 Iteration 5000
reditiad Ibel L vith preciciad bl & with pretiched fabel & with oretictod 1abet & with prediciad nbel 3 with prediciad e 5 ith pretictod Inbel with preticiad nbel & with preticied bl 3 ith
probability 0.9880 probability 0.9974 probability 0.9962 probability 0.9893 probability 09950 probability 0.9964 probability 0.9946 probability 0.9938 probability 0.9937

HEEHEEEHEEHE

We can connect a digit from MNIST to a symbol not in MNIST moving
on the data leaf:

Iteration 1250: Iteration 1875: Iteration 2500 Iteration 3125: teration 3750 teration 4375: Iteration 5000:
pr!dl(led et with pr!dlcled Mbet s with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with predicted label 5 with
probability 0.9139 probability 0.9937 probability 0.9808 probability 0.9795 probability 09670 probability 0.9512 probability 0.9448 probability 0.9228 probability 0.8964

Moving away from the data leaf: MNIST

When moving away from a given data leaf, noise is added, but the
accuracy is high.

Iteration 0 n 125 Iteration 250: Iteration 375 n 500: Iteration 625 Iteration 750: Iteration 875: Iteration 1000:
predicted Iabel D with prﬂll:teﬂ Tabei 0 with predicted Tabet 0 with predicted label O with premcted bl 0 with predicted label 0 with predicted Iabel D with predicted Iabel D with predicted [abel D with
probability 0.9996 probability 0.9996 probability 0.9993 probability 0.9978 probability 0.9920 probability 0.9719 probability 0.9245 probability 0.8533 propaility 0.7713

Iteration 0 Iteration 125 Iteration 250 Iteration 375 Iteration 500: lteration 625 Iteration 750: Iteration 875: Iteration 1000
predicted label 2 with predicted labei 2 with predicted [abel 2 with predicted label 2 with predicted label 2 with predicted label 2 with predicted labei 2 with predicted label 2 with predicted Iabel 2 with
probability 10000 probability 10000 probability 10000 probability 10000 probability 1.0088 probability 0.9993 probability 0.9925 probability 0.9680 probability 0.9294

Moving on a noisy leaf: MNIST

We can connect a noisy datum with any other datum with the same level
of noise:

Iteration 1250 Iteration 2500: Iteration 3750: Iteration 5000- Iteration 6250: teration 7500 teration 8750 Iteration 10000:
prtdlded hera with predicted label 2 with predicted [abel 2 with predicted abel 2 with predicted label 2 with predicted label 2 with predicted label 2 with predicted label 2 with predicted label 2 with
probability 0.9883 probability 0.9998 probability 0.9998 probability 0.9998 probability 0.9998 probability 0.9998 prabability 0.9998 probability 0.9998 probability 0.9998

Iteration 0 Iteration 1250 Iteration 2500: Iteration 3750: Iteraticn 5000: Iteration 6250: Iteration 7500. Iteration 8750. Iteration 10000,
predicted label 3 with predicted label 7 with predicted label 7 with predicted Iabel 7 with predicted label 7 with predicted label 7 with predicted Iabel 7 with predicted Iabel 7 with predicted label 7 with
probability 1.0000 probability 0.9952 probability 0.9953 probability 0.9911 probability 0.9899 probability 0.9903 probability 0.9853 probability 0.9815 propaility 0.9758

Moving on the data manifold: CIFAR10

Neurogeometry

Modelling the human visual cortex using mathematics.
1) Hoffman W.C. - The visual cortex is a contact bundle, 1989
2) Mumford D. - Elastica and Computer vision, 1994

3) Petitot J., Tondut Y. - Vers une Neurogeometrie. Fibrations
corticales, structures de contactet contours subjectifs modaux, 1999

4) Citti G., Sarti A. - Cortical based model of perceptual completion in
the Roto -Translation space, 2006

Receptive Fields

Simple and complex cells perceive directions:

Caortical
simple cells
{AND function)

Notice: simple and complex cells behave as filters in deep learning!

Orientation Hypercolumn

activated
orientation columns

orientation
hypercolumns

Visual Cortex V1

curve

plane of the image

Orientation Hypercolumn: ice cube model

Hypercolumns

* Together, orientation columns and ocular dominance
columns form hypercolumns.

* 18-20columns to represent all orientations for both eyes
— about 1 mm square

One location column
(entire darkened area)

Right and left Set of orientation
ocular dominance columns from
columns 0 1o 180 degrees

Figure 3.30

At each point we see information regarding all possible directions.

Orientation Hypercolumn: V1 structure/1

Mathematical model: fiber bundles

Edges as critical paths in the S'-bundle structure

Model for the visual cortex V as lattice of hypercolumns: we take V C R2.
But at any point we have all directions!

R2X51_>R27 (Xay)79’_>(xay)

St is the circle in the plane: it contains all the directions and it is
parametrized by the angle 6.

Y
_ |~ (rcos(f),rsin(6))
/, AN
’ r/ N
/ g
L |—x
1]
\ /
\ /
~ I
~_1l_--

Boundary completion: association fields

Functional association fields Field, Heyes, Hess - Contour integration by
the human visual system, 1993

Moving around on the data leaf: MNIST

We can connect a digit from MNIST to a symbol not in MNIST moving
on the same data leaf:

Iteration 625: Iteraticn 1250 Iteration 1875. Iteration 2500. Iteraticn 3125- Iteration 3750, Iteration 4375. Itaration 5000
predihed Isbe withpredicicd IDEL S ith predice 1966 5 With predicied obel & with pred i Tabe 5 wih pretiched obe & it preAicied |nbel 5 with pediched obel & it preticied obe & ith
probability 09139 probability 09937 probability 09808 probability 09796 probability 09670 probability 09512 probability 09443 probability 0.9228 probability 08964

NEEEEEEER
el LA B B B

Model for V1 via S!-fiber bundle

Global S? fiber bundle on R2:
R? x St — R?, (x,y),0 — (x,y)

At each point (x, y) of the visual cortex V1 we have three main info:

- absolute position of the correspondent of the point (x, y) in the
retina;

- orientation 6 of some edge at (x,y) (simple and complex cells);

- curvature k of some edge at (x, y) (hypercomplex cells).

Geodesics in Riemannian geometry/1

The geodesic problem: find shortest path on a surface (or manifold).

Geodesics in Riemannian geometry/2

Geodesic equation (via Euler-Lagrange equations):

d?x* \ dxHdx”

gz Tl g gy

Geodesics in SUB-Riemannian geometry

The geodesic problem: find shortest path on a surface (or manifold)
with velocity belonging to a certain subspace.

B3 §% = 50(3)/80(2)
A

PR

T\

ni-)

Sub-Riemannian metric: examples/1

On a bicicle we have a constraint on the direction to take not the path.

Sub-Riemannian metric: examples/2

A robotic arm can draw curves, but it has constraints on the directions
(tangent) of movement.

Distribution

Distribution: (x,y,z) — D

D(x,y,z) is a subspace in R3: line or plane.
A subriemannian metric expresses distances ON the distribution only not
in the whole space.

Distribution and vector fields

Vector fields in R?: ad each point (x, y) we have a vector X|

x,y)-
Example: (x,y) — —y0dx + x0,

P e O T

N s 3l ar e TN
2 f/’.r;/r fffff RN | b '/a;’/;,-;:‘_.*;}}:\‘; w0
FF ey, b 0 LY I i i R
| Edr s onms x| " ;{/-‘f;‘.‘_"::"\\\\
P fpptpes o R ! /f// ,;’Af‘\‘%\\“
| Fhte vy] / SRR
'R CARE T 0 | |
= 0F f+ 400 [= 4
by Lok k |
I AN Moy moee BRI
1} NANA s o ey rr1 1 |
| NXNNSNS s~ ArAA]
I 5 ey 1
! A 2
A1 = |

Sub-Riemannian metric

Idea: we build a geodesic on the whole space according to some metric
and then we project it on the distribution.

2z

24

How do we find the distribution?

Anatomical model: orientation percept construction

© Orientation column activation: local function with fixed orientation
preference 6

X3(0)R : vV — R
(x,y) = [—sinf0x + cosfI,|R(x,y)
where we identify retina=gangli pointwise=V1 domain in R?.
© Hypercolumnar orientation detection: scalar function

O : 74 — R
(x,y) — O(x,y):= argmaxee[ogﬂ{X3(9)R(X,y)}

Anatomical model:

orientation percept construction

:

X3(‘9)R’(Xa y)a :6

Anatomical model: orientation percept construction

Figure: Lift of the R regular sets into R? x [0, 27]

Distribution in R? x S! ¢ R3

X1 = 0 Ox + sin 60
(vave) '_>D(x,y,€) = Span{ ' o o y}

Xo =0y
We want to find curves 7(t) that are tangent to the distribution:

7/(t) € span {

X1 = cos 00y +sin 00,
Xo = 0y

They will be the geodesics in a subriemannian metric!
How to find them: Hamilton equations!

Sub-riemannian geodesics

Hamilton Equations for Subriemannian geodesics:

x=cosfpy pP1=P3p1
y=sinfpy p2=-p3p1

0 = p2 p3 =0

Geodesic solutions, with 6 parameters to be determined from the initial
conditions

x(t) = fot v cos(ws¢) cos(6(s)) ds + xo

y(t) = = [y vcos(wse)sin(8(s)) ds + yo

O(t) = FZ cos(wsp) + bo

Compatibility with visive association fields

