
The Geometry of Deep Learning.
Lecture 2: Deep Learning

Rita Fioresi

Course for PhD Program of Unimore, Ferrara and Parma

February 1, 2023

Deep Learning: CS231 Stanford

Stanford CS231

http://cs231n.stanford.edu/

Ingredients for Deep Learning

Score function: it is a function of the weights w (es. linear classifier)

Loss function: measures error (Li loss of datum i)

Li = −log
efyi
∑

j e
fj
= −fyi + log

∑

j

efj , L =
∑

i

Li

Optimizer: for weights update “minimizes” the Loss
(via stochastic gradient):

wij(t + 1) = wij(t)− α∇ Lstoc, ∇Lstoc =

32
∑

i=1

∇Lrand(i)

Training

Divide the dataset (ex. CIFAR10):
80% Data for training
10% Data for validation
10% Data for test (ONCE)

1 Learning: determine weights parameters

2 Validation: determine net structure.
Example: choose loss function, number of layers, learning rate etc.
Goal: find best hyperparameters.

3 Test: once at the end.

Accuracy: percentage of accurate predictions on tests set.

1. Learning process

Step 1: Compute score of images in training set (Forward pass)
The weights are inizialized randomly.

Step 2: Compute the loss (it measure the “difference” between given
label and correct label for each datum in training set).

Step 3: Compute Stochastic Gradient. (Backpropagation)

Step 4: update weights.

Step 5: Repeat Step 1-2-3 up to an epoch.

Step 6: After 150-200 epochs reduce learning rate and repeat all
steps 1-5.

Epoch= ‖Training set‖/‖minibatch size‖.
NOTE: measure accuracy every 10-20 epochs.
Example: 40000 training set (CIFAR10), 32 images in minibatch, 1
epoch=40000/32 updates.

Loss accuracy in epochs: CIFAR10

Loss accuracy in epochs: MNIST

2. Validation process

Purpose of validation: Determine hyperparameters:

α learning rate,

B minibatch size,

optimizer (SGD, Adam),

net structure (e.g. how many layers, parameters)

training (e.g. number of epochs)

We vary hyperparameters giving some values:

e.g. α = 0.1, 00.1 etc

e.g. B = 8, 16, 32

We use the validation set to test accuracy, while searching for best
hyperparameters.

3. Test

ATTENTION!: use test set ONCE to avoid overfitting!

Validation technique: cross validation=rotation of the training set.

Loss Landscape

Loss (projection) as function of weights.

The Deep Learning Algorithm in more detail

1 Score function
(convolutions)

2 Loss function
(ex.: cross entropy with softmax)

3 Optimizer
(example: stochastic gradient)

1. SCORE function: Convolutional Neural Networks

Convolutions: extract features from images.
Represent the mathematical operation of discrete convolutions via kernels
(here called filters).

Convolutions and “edge detection”

Convolutions

https://cs231n.github.io/convolutional-networks/

Filters

The algorithm learns filters!
https://arxiv.org/abs/1711.08856

Maxpool filter

Example of Deep Learning Neural Network

A typical network structure (alexnet):

Classification accuracy:

Training Exact match Nearest match

Short 93.79 ± 0.76% 99.85 ± 0.11%

Long 95.10 ± 0.19% 99.84 ± 0.05%

Practical use: Colon Cancer Detection

Optical images with Leica IRBE, CCD Rising Tech, 20X magnification.
200 patients (1998-2008).

Data Normal Preneo Adenoma Cancer Total

Train 1616 1628 2736 2968 8048

Validate 200 204 344 256 1004

Test 200 204 340 256 1000

2. LOSS function

Deep Learning uses the Cross Entropy Loss:

L(w) =
∑

x

L(x ,w) = −
∑

x

log[eslabel(x)(x)/(es1(x) + · · · + esN (x))]

L(x): loss for image x .
More generally:

Amari loss: I (x ,w) = − log(p(y |x ,w))

Empirical loss: L(x ,w) = Ey∼p[− log(p(y |x ,w))], where

L(x ,w) = Ey∼p[− log(p(y |x ,w))] = −
∑

i

pi(y |x ,w) log(pi (y |x ,w))

In Deep Learning p(y |x ,w) is obtained via Softmax:

p(y |x ,w) = (pi (y |x ,w)) =

(

esi (x)
∑

j e
sj (x)

)

Softmax and Cross Entropy Loss/1

Softmax

Hence:
p(cat) =

(

e5

e5+e4+e2
, e4

e5+e4+e2
, e2

e5+e4+e2

)

= (0.71, 0.26, 0.04)

Loss(cat) = − log(p(cat)) = 0.34 choose correct label (here “cat”)!

Softmax and Cross Entropy Loss/2

Loss of one image:
L(x) = − log[eslabel(x)(x)/(es1(x) + · · ·+ esN (x))]: loss for image x .
Total loss: sum over all images

Loss = − log(p(cat))− log(p(horse))− log(p(dog)) =

= − log(0.71) − log(0.002) − log(0.02) = 0.34 + 6 + 3.91 = 10.25

KL Divergence

Kullback-Leibler divergence measures the “difference” between the correct
distribution q(x) and the empirical one p(x):

KL(p(x)‖q(x)) = Eq[p] =
∑

qi (x) log(pi (x)) =

= q1(x) log(p1(x)) + q2(x) log(p2(x)) + · · ·+ qn(x) log(pn(x))

Previous example:

x = cat −→ p(x) = (0.71, 0.26, 0.04), q(x) = (1, 0, 0)

KL(p(x)‖q(x)) = 1 · log(0.71) + 0 · log(0.002) + 0 · log(0.02) = 0.34

This is the loss function (for image=”cat”)!

Loss and KL Divergence

The loss function is the Kullback-Leibler divergence up to a constant:

L(x ,w) = Ey∼q[− log(p(y |x ,w))] =

=
C
∑

i=1

qi(y |x) log
qi (y |x)

pi (y |x ,w)
−

C
∑

i=1

qi(y |x) log qi (y |x) =

= KL(q(y |x)‖p(y |x ,w)) −
C
∑

i=1

qi(y |x) log qi(y |x). (1)

q(y |x): true distribution (ex.: mass density distribution)
p(y |x ,w): empirical distribution

Notice: L(x ,w) = KL(q(y |x)‖p(y |x ,w)),
when q(y , x) is the mass density distribution i.e.
q(y |x) = (0, 0, . . . , 1, . . . , 0, 0)

3. OPTIMIZER

Principal optimizers:

Stochastic Gradient

SGD with Nesterov momentum

ADAM (more popular)

Careful: read all options and make sure you understand them!

Regularization: add regularization to the loss to keep your parameters
from getting too large (default is zero!).
Example: L2 regularization, λ regularization parameter.

L(w) =
1

N

∑

i

L(xi ,w) + λ
∑

j

|wj |
2

The Fisher Information matrix

Information Geometry: use of differential geometry to study probability
and statistics.

Key idea: the parameters of a probability distribution are a manifold and
possess a natural metric (Fisher).

F (x ,w) = Ey∼p[∇w log p(y |x ,w) · (∇w log p(y |x ,w))T]

References

Shun-ichi Amari, Natural Gradient Works Efficiently in Learning,
1998.

F. Nielsen, An Elementary Introduction to Information Geometry,
Entropy, 2020.

J. Martens. New insights and perspectives on the natural gradient

method. Journal of Machine Learning Research, 21(146):1-76, 2020.

Properties of the Fisher matrix

Proposition. F is the covariance matrix of the gradient of the Amari loss.

Proof. In fact, the Amari loss is I (x ,w) = − log p(y |x ,w), its gradient is

∇w I (x ,w) = −
∇wp(y |x ,w)

p(y |x ,w)

Properties of the Fisher matrix

Proposition. F is the covariance matrix of the gradient of the Amari loss.

Proof. In fact, the Amari loss is I (x ,w) = − log p(y |x ,w), its gradient is

∇w I (x ,w) = −
∇wp(y |x ,w)

p(y |x ,w)

Notice:
Ey∼p(∇w I) =

∑

pi
∇wpi
pi

=

=
∑

i ∇wpi = ∇w (
∑

i pi) = 0

Properties of the Fisher matrix

Proposition. F is the covariance matrix of the gradient of the Amari loss.

Proof. In fact, the Amari loss is I (x ,w) = − log p(y |x ,w), its gradient is

∇w I (x ,w) = −
∇wp(y |x ,w)

p(y |x ,w)

Notice:
Ey∼p(∇w I) =

∑

pi
∇wpi
pi

=

=
∑

i ∇wpi = ∇w (
∑

i pi) = 0

The covariance matrix of ∇w I (x ,w) is (by definition):

Cov(I) = Ey∼p[(∇w I − Ey∼p(∇w I))
t(∇w I − Ey∼p(∇w I))] =

= Ey∼p[(∇w I)
t(∇w I)] = F (x ,w)

Hessian Geometry

Proposition. F = Ey∼p[H(I)], I = − log p(y |x ,w).

Proof. In fact (write p = p(y |x ,w)):

H[I] = −Jac

[

∇wp

p

]

= − [H(p) · p +∇wp · ∇wp]
1

p2

Take the expected value:

Hessian Geometry

Proposition. F = Ey∼p[H(I)], I = − log p(y |x ,w).

Proof. In fact (write p = p(y |x ,w)):

H[I] = −Jac

[

∇wp

p

]

= − [H(p) · p +∇wp · ∇wp]
1

p2

Take the expected value:

Ey∼p[H[I]] = −
∑

i

pi
H(pi)

pi
+ Ey∼p

[

∇wp

p
·
∇wp

p

]

= F

where
∑

i H(pi) = H(
∑

i pi) = 0.

The Fisher matrix

The Fisher matrix for a minibatch of ONE sample image:

F (x ,w) = Ey∼p[∇w log p(y |x ,w) · (∇w log p(y |x ,w))T]

Key Facts:

KL(p(y |x ,w + δw)||p(y |x ,w)) ∼= 1
2(δw)TF (x ,w)(δw) +O(||δw ||3)

The Fisher matrix F provides a natural metric on the parameter space
during dynamics of the stochastic gradient descent.

rank(F) < number of classes

The metric is neither Riemannian nor subriemannian.
Not constant rank either!

Data matrix

Idea. Treat weights w and images x on the same ground:

F (x ,w) = Ey∼p[∇w log p(y |x ,w) · (∇w log p(y |x ,w))T]

G (x ,w) = Ey∼p[∇x log p(y |x ,w) · (∇x log p(y |x ,w))T].

Key Facts:

KL(p(y |x ,w + δw)||p(y |x ,w)) ∼= 1
2(δw)TF (x ,w)(δw) +O(||δw ||3)

KL(p(y |x + δx ,w)||p(y |x ,w)) ∼= 1
2(δx)

TG (x ,w)(δx) +O(||δx ||3)

Properties of the Fisher matrix F and local data matrix G

1 F (x ,w) and G (x ,w) is a positive semidefinite symmetric matrix.

2 ker F (x ,w) = (spani=1,...,C{∇w log pi (y |x ,w)})⊥;

3 kerG (x ,w) = (spani=1,...,C{∇x log pi (y |x ,w)})⊥.

4 rank F (x ,w) < C , rank G (x ,w) < C .

Dataset G (x ,w) size rank G (x ,w) bound

MNIST 784 10
CIFAR-10 3072 10
CIFAR-100 3072 100
ImageNet 150528 1000

For the Fisher the difference in size and rank is larger!

Data manifold

Result (F.-Grementieri, 2021). Let w be the weights of a deep ReLU
neural network classifier, p given by softmax, G (x ,w) the local data
matrix.
The distribution in the data domain:

x 7→ Dx = (ker G (x ,w))⊥

is involutive i.e.
[X ,Y] ∈ D, ∀ X ,Y ∈ D.

1 At each point in the dataset in R
n, kerG (x ,w)⊥ is tangent to a

submanifold (data leaf) of dimension rank G (x ,w) < C

2 G defines a foliation on R
n of rank at most C − 1 (Frobenius Thm).

Remark: This is not true for the distribution via the Fisher matrix!

w 7→ D′
w := (ker F (w))⊥

is not involutive (e.g. MNIST, lenet).

Data manifold

Riemannian Structure on the Data Manifold

Facts

The matrix G (x ,w), restricted to the subspace (kerG (x ,w))⊥ gives a
Riemannian metric to each leaf of the foliation.

All the dataset is on one leaf: the data leaf
We perform dimensionality reduction!

We move from a point x in our dataset to any other point x ′ in the
dataset with an with an horizontal path, that is a path on the data
leaf.

Not all points on the data leaf are in the data set, but they represent
symbols.

Moving on the data leaf: MNIST

Moving around in on the data leaf:

We can connect any two data=images.

Any path starting from one image and going to another goes through
data with the same level of noise.

We can connect a digit from MNIST to a symbol not in MNIST moving
on the data leaf:

Moving away from the data leaf: MNIST

When moving away from a given data leaf, noise is added, but the
accuracy is high.

Moving on a noisy leaf: MNIST

We can connect a noisy datum with any other datum with the same level
of noise:

Moving on the data manifold: CIFAR10

Neurogeometry

Modelling the human visual cortex using mathematics.

1) Hoffman W.C. - The visual cortex is a contact bundle, 1989

2) Mumford D. - Elastica and Computer vision, 1994

3) Petitot J., Tondut Y. - Vers une Neurogeometrie. Fibrations

corticales, structures de contactet contours subjectifs modaux, 1999

4) Citti G., Sarti A. - Cortical based model of perceptual completion in

the Roto -Translation space, 2006

Receptive Fields

Simple and complex cells perceive directions:

Notice: simple and complex cells behave as filters in deep learning!

Orientation Hypercolumn

Orientation Hypercolumn: ice cube model

At each point we see information regarding all possible directions.

Orientation Hypercolumn: V1 structure/1

Mathematical model: fiber bundles

Edges as critical paths in the S1-bundle structure

Model for the visual cortex V as lattice of hypercolumns: we take V ⊂ R
2.

But at any point we have all directions!

R
2 × S1 −→ R

2, (x , y), θ 7→ (x , y)

S1 is the circle in the plane: it contains all the directions and it is
parametrized by the angle θ.

Boundary completion: association fields

Functional association fields Field, Heyes, Hess - Contour integration by

the human visual system, 1993

Moving around on the data leaf: MNIST

We can connect a digit from MNIST to a symbol not in MNIST moving
on the same data leaf:

Model for V1 via S1-fiber bundle

Global S1 fiber bundle on R
2:

R
2 × S1 −→ R

2, (x , y), θ 7→ (x , y)

At each point (x , y) of the visual cortex V1 we have three main info:

- absolute position of the correspondent of the point (x , y) in the
retina;

- orientation θ of some edge at (x , y) (simple and complex cells);

- curvature k of some edge at (x , y) (hypercomplex cells).

Geodesics in Riemannian geometry/1

The geodesic problem: find shortest path on a surface (or manifold).

Geodesics in Riemannian geometry/2

Geodesic equation (via Euler-Lagrange equations):

d2xλ

dt2
+ Γλµν

dxµ

dt

dxν

dt
= 0,

Geodesics in SUB-Riemannian geometry

The geodesic problem: find shortest path on a surface (or manifold)
with velocity belonging to a certain subspace.

Sub-Riemannian metric: examples/1

On a bicicle we have a constraint on the direction to take not the path.

Sub-Riemannian metric: examples/2

A robotic arm can draw curves, but it has constraints on the directions
(tangent) of movement.

Distribution

Distribution: (x , y , z) 7→ D(x ,y ,z)

D(x ,y ,z) is a subspace in R
3: line or plane.

A subriemannian metric expresses distances ON the distribution only not
in the whole space.

Distribution and vector fields

Vector fields in R2: ad each point (x , y) we have a vector X(x ,y).
Example: (x , y) 7→ −y∂x + x∂y

Sub-Riemannian metric

Idea: we build a geodesic on the whole space according to some metric
and then we project it on the distribution.

How do we find the distribution?

Anatomical model: orientation percept construction

1 Orientation column activation: local function with fixed orientation
preference θ

X3(θ)R : V −→ R

(x , y) 7−→ [− sin θ ∂x + cos θ ∂y]R(x , y)

where we identify retina=gangli pointwise=V1 domain in R
2.

2 Hypercolumnar orientation detection: scalar function

Θ : V −→ R

(x , y) 7−→ Θ(x , y) := argmaxθ∈[0,2π]
{

X3(θ)R(x , y)
}

Anatomical model: orientation percept construction

R(x , y)

X3(θ)R(x , y), θ = π
4 ,

3π
4 , 5π4 , 7π4

Anatomical model: orientation percept construction

Figure: Lift of the R regular sets into R
2 × [0, 2π]

Distribution in R2 × S1 ⊂ R
3

(x , y , θ) 7→ D(x ,y ,θ) = span

{

X1 = cos θ ∂x + sin θ ∂y

X2 = ∂θ

}

We want to find curves γ(t) that are tangent to the distribution:

γ′(t) ∈ span

{

X1 = cos θ ∂x + sin θ ∂y

X2 = ∂θ

}

They will be the geodesics in a subriemannian metric!
How to find them: Hamilton equations!

Sub-riemannian geodesics

Hamilton Equations for Subriemannian geodesics:

ẋ = cos θ p1

ẏ = sin θ p1

θ̇ = p2

ṗ1 = p3 p1

ṗ2 = −p3 p1

ṗ3 = 0

Geodesic solutions, with 6 parameters to be determined from the initial
conditions

x(t) =
∫ t

0 v cos(ωsφ) cos(θ(s)) ds + x0

y(t) = ±
∫ t

0 v cos(ωsφ) sin(θ(s)) ds + y0

θ(t) = ∓ v
ω
cos(ωsφ) + θ0

Compatibility with visive association fields

