The Geometry of Deep Learning. Lecture 2: Deep Learning

Rita Fioresi

Course for PhD Program of Unimore, Ferrara and Parma

February 1, 2023

CS231n: Convolutional Neural Networks for Visual Recognition

Spring 2020

Previous Years: [Winter 2015] [Winter 2016] [Spring 2017] [Spring 2018] [Spring 2019]

Stanford CS231

Ingredients for Deep Learning

• Score function: it is a function of the weights w (es. linear classifier)

• Loss function: measures error (L_i loss of datum i)

$$L_i = -\log \frac{e^{f_{y_i}}}{\sum_j e^{f_j}} = -f_{y_i} + \log \sum_j e^{f_j}, \qquad L = \sum_i L_i$$

• **Optimizer**: for weights update "minimizes" the Loss (via stochastic gradient):

$$w_{ij}(t+1) = w_{ij}(t) - \alpha \nabla L_{\text{stoc}}, \qquad \nabla L_{\text{stoc}} = \sum_{i=1}^{32} \nabla L_{\text{rand}(i)}$$

Divide the dataset (ex. CIFAR10): 80% Data for **training** 10% Data for **validation** 10% Data for **test** (ONCE)

Learning: determine weights parameters

Validation: determine net structure.
 Example: choose loss function, number of layers, learning rate etc.
 Goal: find best hyperparameters.

Test: once at the end.

Accuracy: percentage of accurate predictions on tests set.

1. Learning process

- Step 1: Compute score of images in training set (Forward pass) The weights are inizialized randomly.
- **Step 2**: Compute the loss (it measure the "difference" between given label and correct label for each datum in training set).
- Step 3: Compute Stochastic Gradient. (Backpropagation)
- Step 4: update weights.
- Step 5: Repeat Step 1-2-3 up to an epoch.
- Step 6: After 150-200 epochs reduce learning rate and repeat all steps 1-5.

Epoch= ||Training set||/||minibatch size||.

NOTE: measure accuracy every 10-20 epochs.

Example: 40000 training set (CIFAR10), 32 images in minibatch, 1 epoch=40000/32 updates.

Loss accuracy in epochs: CIFAR10

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

Loss accuracy in epochs: MNIST

Purpose of validation: Determine hyperparameters:

- α learning rate,
- ${\cal B}$ minibatch size,
- optimizer (SGD, Adam),
- net structure (e.g. how many layers, parameters)
- training (e.g. number of epochs)

We vary hyperparameters giving some values:

- e.g. $\alpha = 0.1,00.1~{\rm etc}$
- e.g. $\mathcal{B} = 8, 16, 32$

We use the **validation set** to test accuracy, while searching for best hyperparameters.

ATTENTIONI: use test set ONCE to avoid overfitting!

Validation technique: cross validation=rotation of the training set.

(日) (四) (三) (三)

э

Loss (projection) as function of weights.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Score function (convolutions)

2 Loss function

(ex.: cross entropy with softmax)

Optimizer

(example: stochastic gradient)

1. SCORE function: Convolutional Neural Networks

Convolutions: extract *features* from images.

Represent the mathematical operation of discrete convolutions via kernels (here called filters).

10	10	10	0	0	0]
10	10	10	0	0	0	1
10	10	10	0	0	0	1
10	10	10	0	0	0	1
10	10	10	0	0	0	1
10	10	10	0	0	0	1

6 x 6

=

-0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

4 x 4

Convolutional Neural Network

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

The algorithm **learns** filters! https://arxiv.org/abs/1711.08856

Maxpool filter

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

Example of Deep Learning Neural Network

A typical network structure (alexnet):

Classification accuracy:

Training	Exact match	Nearest match
Short	$93.79\pm0.76\%$	$99.85\pm0.11\%$
Long	$95.10\pm0.19\%$	$99.84\pm0.05\%$

Optical images with Leica IRBE, CCD Rising Tech, 20X magnification. 200 patients (1998-2008).

Data	Normal	Preneo	Adenoma	Cancer	Total
Train	1616	1628	2736	2968	8048
Validate	200	204	344	256	1004
Test	200	204	340	256	1000

2. LOSS function

Deep Learning uses the Cross Entropy Loss:

$$L(w) = \sum_{x} L(x, w) = -\sum_{x} \log[e^{s_{\text{label}(x)}}(x)/(e^{s_1(x)} + \dots + e^{s_N(x)})]$$

L(x): loss for image x. More generally:

- Amari loss: $I(x, w) = -\log(p(y|x, w))$
- Empirical loss: $L(x, w) = \mathbb{E}_{y \sim p}[-\log(p(y|x, w))]$, where

$$L(x,w) = \mathbb{E}_{y \sim p}[-\log(p(y|x,w))] = -\sum_{i} p_i(y|x,w)\log(p_i(y|x,w))$$

In Deep Learning p(y|x, w) is obtained via Softmax:

$$p(y|x,w) = (p_i(y|x,w)) = \left(\frac{e^{s_i(x)}}{\sum_j e^{s_j(x)}}\right)$$

Softmax and Cross Entropy Loss/1

Softmax

Hence:

$$p(\text{cat}) = \left(\frac{e^5}{e^5 + e^4 + e^2}, \frac{e^4}{e^5 + e^4 + e^2}, \frac{e^2}{e^5 + e^4 + e^2}\right)$$

= (0.71, 0.26, 0.04)

 $Loss(cat) = -\log(p(cat)) = 0.34$ choose correct label (here "cat")!

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Softmax and Cross Entropy Loss/2

Loss of one image: $L(x) = -\log[e^{s_{label(x)}}(x)/(e^{s_1(x)} + \dots + e^{s_N(x)})]:$ loss for image x. Total loss: sum over all images

$$Loss = -\log(p(cat)) - \log(p(horse)) - \log(p(dog)) =$$
$$= -\log(0.71) - \log(0.002) - \log(0.02) = 0.34 + 6 + 3.91 = 10.25$$

Kullback-Leibler divergence measures the "difference" between the correct distribution q(x) and the empirical one p(x):

$$\begin{aligned} & \mathcal{K}L(p(x) \| q(x)) = \mathbf{E}_q[p] = \sum q_i(x) \log(p_i(x)) = \\ & = q_1(x) \log(p_1(x)) + q_2(x) \log(p_2(x)) + \dots + q_n(x) \log(p_n(x)) \end{aligned}$$

Previous example:

 $x = \text{cat} \longrightarrow p(x) = (0.71, 0.26, 0.04), \qquad q(x) = (1, 0, 0)$

 $KL(p(x)||q(x)) = 1 \cdot \log(0.71) + 0 \cdot \log(0.002) + 0 \cdot \log(0.02) = 0.34$ This is the loss function (for image="cat")!

The loss function is the Kullback-Leibler divergence up to a constant:

$$L(x, w) = \mathbb{E}_{y \sim q}[-\log(p(y|x, w))] =$$

= $\sum_{i=1}^{C} q_i(y|x) \log \frac{q_i(y|x)}{p_i(y|x, w)} - \sum_{i=1}^{C} q_i(y|x) \log q_i(y|x) =$
= $\mathrm{KL}(q(y|x) || p(y|x, w)) - \sum_{i=1}^{C} q_i(y|x) \log q_i(y|x).$ (1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

q(y|x): true distribution (ex.: mass density distribution) p(y|x, w): empirical distribution

Notice:
$$L(x, w) = KL(q(y|x)||p(y|x, w))$$
,
when $q(y, x)$ is the mass density distribution i.e.
 $q(y|x) = (0, 0, ..., 1, ..., 0, 0)$

Principal optimizers:

- Stochastic Gradient
- SGD with Nesterov momentum
- ADAM (more popular)

Careful: read all options and make sure you understand them!

Regularization: add regularization to the loss to keep your parameters from getting too large (default is zero!). **Example**: L^2 regularization, λ regularization parameter.

$$L(w) = \frac{1}{N} \sum_{i} L(x_i, w) + \lambda \sum_{j} |w_j|^2$$

Information Geometry: use of differential geometry to study probability and statistics.

Key idea: the parameters of a probability distribution are a manifold and possess a natural metric (Fisher).

$$F(x, w) = \mathbb{E}_{y \sim p} [\nabla_w \log p(y|x, w) \cdot (\nabla_w \log p(y|x, w))^T]$$

References

- Shun-ichi Amari, *Natural Gradient Works Efficiently in Learning*, 1998.
- F. Nielsen, An Elementary Introduction to Information Geometry, Entropy, 2020.
- J. Martens. New insights and perspectives on the natural gradient method. Journal of Machine Learning Research, 21(146):1-76, 2020.

Properties of the Fisher matrix

Proposition. *F* is the covariance matrix of the gradient of the Amari loss. **Proof**. In fact, the Amari loss is $I(x, w) = -\log p(y|x, w)$, its gradient is

$$abla_w I(x,w) = -rac{
abla_w p(y|x,w)}{p(y|x,w)}$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Properties of the Fisher matrix

Proposition. *F* is the covariance matrix of the gradient of the Amari loss. **Proof**. In fact, the Amari loss is $I(x, w) = -\log p(y|x, w)$, its gradient is

$$\nabla_w I(x,w) = -\frac{\nabla_w p(y|x,w)}{p(y|x,w)}$$

Notice:

$$\mathbb{E}_{y\sim p}(\nabla_w I) = \sum p_i \frac{\nabla_w p_i}{p_i} =$$

$$=\sum_{i} \nabla_{w} p_{i} = \nabla_{w} (\sum_{i} p_{i}) = 0$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Properties of the Fisher matrix

Proposition. *F* is the covariance matrix of the gradient of the Amari loss. **Proof**. In fact, the Amari loss is $I(x, w) = -\log p(y|x, w)$, its gradient is

$$\nabla_w I(x,w) = -\frac{\nabla_w p(y|x,w)}{p(y|x,w)}$$

Notice:

$$\mathbb{E}_{y\sim p}(\nabla_w I) = \sum p_i \frac{\nabla_w p_i}{p_i} =$$

$$=\sum_{i} \nabla_{w} p_{i} = \nabla_{w} (\sum_{i} p_{i}) = 0$$

The covariance matrix of $\nabla_w I(x, w)$ is (by definition):

$$Cov(I) = \mathbb{E}_{y \sim p}[(\nabla_w I - \mathbb{E}_{y \sim p}(\nabla_w I))^t (\nabla_w I - \mathbb{E}_{y \sim p}(\nabla_w I))] =$$
$$= \mathbb{E}_{y \sim p}[(\nabla_w I)^t (\nabla_w I)] = F(x, w)$$

Proposition. $F = \mathbb{E}_{y \sim p}[\mathbb{H}(I)], I = -\log p(y|x, w).$ **Proof**. In fact (write p = p(y|x, w)):

$$\mathbb{H}[I] = -\mathrm{Jac}\left[\frac{\nabla_w p}{p}\right] = -\left[\mathbb{H}(p) \cdot p + \nabla_w p \cdot \nabla_w p\right] \frac{1}{p^2}$$

Take the expected value:

Proposition. $F = \mathbb{E}_{y \sim p}[\mathbb{H}(I)], I = -\log p(y|x, w).$ **Proof**. In fact (write p = p(y|x, w)):

$$\mathbb{H}[I] = -\mathrm{Jac}\left[\frac{\nabla_w p}{p}\right] = -\left[\mathbb{H}(p) \cdot p + \nabla_w p \cdot \nabla_w p\right] \frac{1}{p^2}$$

Take the expected value:

$$\mathbb{E}_{y \sim p}[\mathbb{H}[I]] = -\sum_{i} p_{i} \frac{\mathbb{H}(p_{i})}{p_{i}} + \mathbb{E}_{y \sim p} \left[\frac{\nabla_{w} p}{p} \cdot \frac{\nabla_{w} p}{p} \right] = F$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

where $\sum_{i} \mathbb{H}(p_i) = \mathbb{H}(\sum_{i} p_i) = 0.$

The Fisher matrix for a minibatch of ONE sample image:

$$F(x, w) = \mathbb{E}_{y \sim p} [\nabla_w \log p(y|x, w) \cdot (\nabla_w \log p(y|x, w))^T]$$

Key Facts:

$$\mathrm{KL}(p(y|x,w+\delta w)||p(y|x,w)) \cong \frac{1}{2}(\delta w)^{\mathsf{T}} F(x,w)(\delta w) + \mathcal{O}(||\delta w||^3)$$

The Fisher matrix F provides a natural metric on the **parameter space** during dynamics of the stochastic gradient descent.

rank(F) < number of classes

The metric is neither Riemannian nor subriemannian. Not constant rank either! **Idea**. Treat weights *w* and images *x* on the same ground:

$$F(x,w) = \mathbb{E}_{y \sim p} [\nabla_w \log p(y|x,w) \cdot (\nabla_w \log p(y|x,w))^T]$$

$$G(x,w) = \mathbb{E}_{y \sim p} [\nabla_x \log p(y|x,w) \cdot (\nabla_x \log p(y|x,w))^T].$$

Key Facts:

$$\begin{aligned} \operatorname{KL}(p(y|x,w+\delta w)||p(y|x,w)) &\cong \frac{1}{2}(\delta w)^{T}F(x,w)(\delta w) + \mathcal{O}(||\delta w||^{3}) \\ \operatorname{KL}(p(y|x+\delta x,w)||p(y|x,w)) &\cong \frac{1}{2}(\delta x)^{T}G(x,w)(\delta x) + \mathcal{O}(||\delta x||^{3}) \end{aligned}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 < @</p>

Properties of the Fisher matrix F and local data matrix G

• F(x, w) and G(x, w) is a positive semidefinite symmetric matrix.

- ② ker $F(x, w) = (\operatorname{span}_{i=1,...,C} \{\nabla_w \log p_i(y|x, w)\})^{\perp};$
- $estimation in G(x,w) = (\operatorname{span}_{i=1,\ldots,C} \{ \nabla_x \log p_i(y|x,w) \})^{\perp}.$
- rank F(x, w) < C, rank G(x, w) < C.

Dataset	G(x, w) size	rank $G(x, w)$ bound
MNIST	784	10
CIFAR-10	3072	10
CIFAR-100	3072	100
ImageNet	150528	1000

For the Fisher the difference in size and $\ensuremath{\operatorname{rank}}$ is larger!

Data manifold

Result (F.-Grementieri, 2021). Let w be the weights of a deep ReLU neural network classifier, p given by softmax, G(x, w) the local data matrix.

The distribution in the data domain:

$$x\mapsto \mathcal{D}_x=(\ker\, G(x,w))^\perp$$

is involutive i.e.

$$[X, Y] \in \mathcal{D}, \qquad \forall X, Y \in \mathcal{D}.$$

- At each point in the dataset in ℝⁿ, ker G(x, w)[⊥] is tangent to a submanifold (data leaf) of dimension rank G(x, w) < C</p>
- **2** G defines a foliation on \mathbb{R}^n of rank at most C 1 (**Frobenius Thm**).

Remark: This is not true for the distribution via the Fisher matrix!

$$w\mapsto \mathcal{D}'_w:=(\ker F(w))^\perp$$

is **not** involutive (e.g. MNIST, lenet).

Data manifold

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 − のへで

Facts

- The matrix G(x, w), restricted to the subspace (ker G(x, w))[⊥] gives a Riemannian metric to each leaf of the foliation.
- All the dataset is on one leaf: the **data leaf** We perform dimensionality reduction!
- We move from a point x in our dataset to any other point x' in the dataset with an with an *horizontal* path, that is a path on the data leaf.
- Not all points on the data leaf are in the data set, but they represent *symbols*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Moving on the data leaf: MNIST

Moving around in on the data leaf:

- We can connect any two data=images.
- Any path starting from one image and going to another goes through data with the same level of noise.

We can connect a digit from MNIST to a symbol **not** in MNIST moving on the **data leaf**:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Moving away from the data leaf: MNIST

When moving **away** from a given data leaf, noise is added, but the accuracy is high.

Iteration 0 Iteration 125: Iteration 250-Iteration 375-Iteration 500 Iteration 625 Iteration 750: Iteration 875 Iteration 1000 predicted label 2 with probability 1.0000 probability 1.0000 probability 1.0000 probability 1.0000 probability 1.0000 probability 0.9993 probability 0.9925 probability 0.9680 probability 0.9294

Moving on a noisy leaf: MNIST

We can connect a noisy datum with any other datum with the **same** level of noise:

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > のへの

Moving on the data manifold: CIFAR10

Modelling the human visual cortex using mathematics.

- 1) Hoffman W.C. The visual cortex is a contact bundle, 1989
- 2) Mumford D. Elastica and Computer vision, 1994
- 3) **Petitot J., Tondut Y.** Vers une Neurogeometrie. Fibrations corticales, structures de contactet contours subjectifs modaux, 1999
- 4) Citti G., Sarti A. Cortical based model of perceptual completion in the Roto Translation space, 2006

Receptive Fields

Simple and complex cells perceive directions:

Notice: simple and complex cells behave as filters in deep learning!

Orientation Hypercolumn

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽ Q @

Orientation Hypercolumn: ice cube model

Hypercolumns

- Together, orientation columns and ocular dominance columns form hypercolumns.
- 18-20 columns to represent all orientations for both eyes
 - about 1 mm square

At each point we see information regarding **all** possible directions.

Orientation Hypercolumn: V1 structure/1

Mathematical model: fiber bundles

Edges as critical paths in the S^1 -bundle structure

Model for the visual cortex V as lattice of hypercolumns: we take $V \subset \mathbb{R}^2$. But **at any point we have all directions**!

$$\mathbb{R}^2 imes S^1 \longrightarrow \mathbb{R}^2, \qquad (x,y), \theta \mapsto (x,y)$$

 S^1 is the circle in the plane: it contains all the directions and it is parametrized by the angle θ .

Boundary completion: association fields

Functional association fields Field, Heyes, Hess - *Contour integration by the human visual system*, 1993

We can connect a digit from MNIST to a symbol **not** in MNIST moving on the **same** data leaf:

Global S^1 fiber bundle on \mathbb{R}^2 :

$$\mathbb{R}^2 \times S^1 \longrightarrow \mathbb{R}^2, \qquad (x, y), \theta \mapsto (x, y)$$

At each point (x, y) of the visual cortex V1 we have three main info:

- absolute position of the correspondent of the point (*x*, *y*) in the retina;
- orientation θ of some edge at (x, y) (simple and complex cells);

- curvature k of some edge at (x, y) (hypercomplex cells).

Geodesics in Riemannian geometry/1

The geodesic problem: find shortest path on a surface (or manifold).

Geodesics in Riemannian geometry/2

Geodesic equation (via Euler-Lagrange equations):

$$\frac{d^2x^{\lambda}}{dt^2} + \Gamma^{\lambda}_{\mu\nu}\frac{dx^{\mu}}{dt}\frac{dx^{\nu}}{dt} = 0,$$

The geodesic problem: find shortest path on a surface (or manifold) with velocity belonging to a certain subspace.

Sub-Riemannian metric: examples/1

On a bicicle we have a constraint on the direction to take **not** the path.

(日) (部) (E) (E) (E)

Sub-Riemannian metric: examples/2

A robotic arm can draw curves, but it has constraints on the directions (tangent) of movement.

Distribution: $(x, y, z) \mapsto \mathcal{D}_{(x, y, z)}$

 $\mathcal{D}_{(x,y,z)}$ is a subspace in \mathbb{R}^3 : line or plane. A subriemannian metric expresses distances ON the distribution only not in the whole space.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Vector fields in R^2 : ad each point (x, y) we have a vector $X_{(x,y)}$. Example: $(x, y) \mapsto -y\partial_x + x\partial_y$

Sub-Riemannian metric

Idea: we build a geodesic on the whole space according to some metric and then we **project** it on the distribution.

How do we find the distribution?

Orientation column activation: local function with fixed orientation preference θ

$$\begin{array}{rccc} X_3(\theta) \, \mathcal{R} : & V & \longrightarrow & \mathbb{R} \\ & & (x,y) & \longmapsto & \left[-\sin\theta \, \partial_x + \cos\theta \, \partial_y \right] \mathcal{R}(x,y) \end{array}$$

where we identify retina=gangli pointwise=V1 domain in \mathbb{R}^2 .

Weight and the second secon

$$\begin{array}{cccc} \Theta : & V & \longrightarrow & \mathbb{R} \\ & (x,y) & \longmapsto & \Theta(x,y) := \operatorname{argmax}_{\theta \in [0,2\pi]} \big\{ X_3(\theta) \mathcal{R}(x,y) \big\} \end{array}$$

▲日▼▲□▼▲□▼▲□▼ □ ののの

Anatomical model: orientation percept construction

Anatomical model: orientation percept construction

Figure: Lift of the \mathcal{R} regular sets into $\mathbb{R}^2 \times [0, 2\pi]$

・ロト ・聞ト ・ヨト ・ヨト

э

$$(x, y, \theta) \mapsto \mathcal{D}_{(x, y, \theta)} = \operatorname{span} \left\{ egin{array}{l} X_1 = \cos \, \theta \, \partial_x + \sin \, \theta \, \partial_y \ X_2 = \partial_\theta \end{array}
ight\}$$

We want to find curves $\gamma(t)$ that are **tangent** to the distribution:

$$\gamma'(t)\in ext{span} \left\{egin{array}{l} X_1=\cos\, heta\,\partial_x+\sin\, heta\,\partial_y\ X_2=\partial_ heta\ X_2=\partial_ heta \end{array}
ight\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

They will be the geodesics in a subriemannian metric! How to find them: Hamilton equations! Hamilton Equations for Subriemannian geodesics:

$$\begin{cases} \dot{x} = \cos \theta \, p_1 & \dot{p}_1 = p_3 \, p_1 \\ \dot{y} = \sin \theta \, p_1 & \dot{p}_2 = -p_3 \, p_1 \\ \dot{\theta} = p_2 & \dot{p}_3 = 0 \end{cases}$$

Geodesic solutions, with 6 parameters to be determined from the initial conditions

$$\begin{aligned} x(t) &= \int_0^t v \cos(\omega s \phi) \cos(\theta(s)) \, ds + x_0 \\ y(t) &= \pm \int_0^t v \cos(\omega s \phi) \sin(\theta(s)) \, ds + y_0 \\ \theta(t) &= \mp \frac{v}{\omega} \cos(\omega s \phi) + \theta_0 \end{aligned}$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Compatibility with visive association fields

(日) (四) (三) (三)

э