

QUANTUM COMPUTING: a hybrid point of view

A Quantum Day in Bologna
Caligola Workshop
June 9, 2023

Quantum Simulations

Richard P. Feynman

Now, what kind of physics are we going to imitate? First, I am going to describe the possibility of simulating physics in the classical approximation, a thing which is usually described by local differential equations. But the physical world is quantum mechanical, and therefore the proper problem is the simulation of quantum physics-which is what I really want to talk about, but I'll come to that later. So what kind of simulation do I mean?

I want to talk about the possibility that there is to be an exact simulation, that the computer will do exactly the same as nature.

International Journal of Theoretical Physics, Vol. 21, Nos. 6/7, 1982

ANALOGUE SIMULATIONS

Single atoms/ions trapped in optical lattices very versatile systems:

- different geometries
- tunable hopping velocities
- controllabile on-site \& interaction potentials
- different statistics (bosons, fermions, anyons?, ...)
- internal degrees of freedom

QUANTUM COMPUTING

Mainly based on superconducting qubits more developed from commercial side:

- Low-T devices
- asy to interface
- scalability
- universality

OTHER IMPLEMENTATIONS

Ising machines quantum annealing based

photonic

topological materials
cavity QED
quantum dots in silicon vacancies in diamond molecular magnets

[^0]Applications in:

- classical hard (combinatorial) problems
- chemical compounds
- condensed matter models
- statistical mechanics models and critical phenomena
- fundamental interactions: particle physics and gravity

BEHIND: mathematical structure of quantum mechanics

- Hilbert space \& operator algebra theory
- Probability (q.) \& estimation theory
- Geometry of Hilbert space
- diff equations: Schroedinger or Lindblad

Quantum Approximation Optimization Algorithm (QAOA)

K. Barthi et al.; arXiv:2101.08448

QUANTUM RESOURCES

for preparation of a parametrised variational state

- embed dof in register of qubits \& define (cost) Hamiltonian whose $\left\langle H_{C}\right\rangle$ has to be minimized
- use a quantum circuit built out of a set of parametrised unitary operators to span the the space of possible ground states $|\theta, \phi\rangle$
- make measurements to determine the objective function $\langle\theta, \phi| H_{C}|\theta, \phi\rangle$
hybrid protocol: that exploits quantum resources to span the space of states and classical techniques for optimization

CLASSICAL RESOURCES

and techniques (local gradient, global, machine learning, ...) to find the optimal values of the parameters and the corresponding ground state $\left|\theta_{\text {opt } t}, \phi_{\text {opt }}\right\rangle$

- Solution of Combinatorial problems on Graphs (NP-hard)

MIS problem: find the largest set of nodes not adjacent

Max-Cut problem: partition the graph in two sets of nodes interconnected by the largest number of links

- Ground State Preparation for Nontrivial Quantum Hamiltonians

\mathbb{Z}_{2} Lattice Gauge Theory

$$
H(h)=H_{E}+h H_{B}
$$

electric contribution

$$
H_{E}=\sum_{l}\left(1-\sigma_{l}^{x}\right)
$$

magnetic contribution

$$
H_{B}=-\sum_{p} \mathscr{B}_{p}=-\sum_{p} \sigma_{p_{1}}^{z} \sigma_{p_{2}}^{z} \sigma_{p_{3}}^{z} \sigma_{p_{4}}^{z}
$$

$$
\mathscr{A}_{v}|\psi\rangle_{p h y s}=|\psi\rangle_{p h y s} \quad \mathscr{A}_{v}=\prod_{l \in v} \sigma_{l}^{x}
$$

$$
E_{P}(\gamma, \beta)=\left\langle\psi_{P}(\gamma, \beta)\right| H(h)\left|\psi_{P}(\gamma, \beta)\right\rangle
$$

Initialisation of the state

* Combinatorial Problem
$\left|\Omega_{0}\right\rangle=\bigotimes|+\rangle_{x}$
x
simple product state, prepared by Hadamard gate

EMBEDDING of data might be crucial for efficiency

$$
(0,0,1,0,1, \cdots, 1,1,1,0) \mapsto|\psi\rangle \in \mathscr{H}
$$

* Quantum Hamiltonian
$\left|\Omega_{B}\right\rangle=\mathcal{N} \sum_{\Gamma} \mathscr{W}_{\Gamma}\left|\Omega_{E}\right\rangle$
such states might have entanglement -> complicated circuit that cannot be done in parallel on plaquettes (consistent with results that $\mathrm{O}(\mathrm{L})$ circuit depth to prepare states with topological entanglement)

Parametrised quantum evolution

* Combinatorial Problem

$$
\left|\psi_{P}(\gamma, \beta)\right\rangle=\left(\prod_{m=1}^{P} e^{-i \beta_{m} H_{M}} e^{-i \gamma_{m} H_{B}}\right)\left|\psi_{0}\right\rangle
$$

$$
\begin{aligned}
& H_{C}^{(M I S)}=\sum_{x} Z_{x}+\omega \sum_{x y} Z_{x} Z_{y} \\
& H_{M}^{(M I S)}=\sum_{x} X_{x} \\
& {\left[H_{M}, H_{C}\right] \neq 0}
\end{aligned}
$$

* Quantum Hamiltonian
(similar to a Suzuki-Trotter decomposition)

$$
\left|\psi_{P}(\gamma, \beta)\right\rangle=\left(\prod_{m=1}^{P} e^{-i \beta_{m} H_{E}} e^{-i \gamma_{m} H_{B}}\right)\left|\psi_{0}\right\rangle
$$

$$
\left[H_{E}, H_{B}\right] \neq 0
$$

gauge invariant

Quantum circuit for each step ($m=1, \cdots, P$) of the QAOA to implement the evolutions through H_{1}, H_{1}

$$
E_{P}(\gamma, \beta)=\left\langle\psi_{P}(\gamma, \beta)\right| H_{C}\left|\psi_{P}(\gamma, \beta)\right\rangle
$$

Energy landscape -> rugged; barren plateaus

1) Standard gradient-descent methods (Vanilla, Stochastic, ..)
2) Global optimisation (basin-hopping, differential evolution...)
3) Quantum annealing
4) Bayesian approach based on tstaistical inference
5) Natural and Quantum Natural Gradient

Combinatorial Problem

$$
R=E(\boldsymbol{\theta}) / E_{G S}
$$

* Quantum Hamiltonian

$$
F=\left|\left\langle\boldsymbol{\theta} \mid z^{\star}\right\rangle\right|^{2}
$$

QAOA EVOLUTION + CLASS. OPT. PATH IN HILBERT SPACE
"OPTIMAL" PATHS?

* ADIABATIC THEOREM PREVENTS EFFICIENT EVOLUTION IF THE HAMILTONIAN GAP BECOMES ZERO: SHORTCUT TO ADIABATICITY?
- CAN WE EXPLOIT THE GEOMETRY OF HILBERT SPACE?

GEODESICS?

$\mathbb{R}_{+} \hookrightarrow$
 $\mathrm{U}(1) \hookrightarrow$
 $\mathcal{H}_{0}=\mathbb{C}^{d} \backslash\{\mathbf{0}\}$

 $P \mathcal{H} \sim \mathbb{C P}^{d-1}$

Quantum Natural Gradient Descent

- Compute the Fubini-Study metric [4] $g(\boldsymbol{\theta})=\operatorname{Re}[G(\boldsymbol{\theta})]$, where:

$$
G_{i j}(\boldsymbol{\theta})=\left\langle\frac{\partial \psi_{\theta}}{\partial \theta_{i}}, \frac{\partial \psi_{\theta}}{\partial \theta_{j}}\right\rangle-\left\langle\frac{\partial \psi_{\theta}}{\partial \theta_{i}}, \psi_{\theta}\right\rangle\left\langle\psi_{\theta}, \frac{\partial \psi_{\theta}}{\partial \theta_{j}}\right\rangle
$$

- Update the parameters $\boldsymbol{\theta}$, such that:

$$
\boldsymbol{\theta}_{t+1}=\boldsymbol{\theta}_{t}-\eta g^{-1}\left(\boldsymbol{\theta}_{t}\right) \nabla E\left(\boldsymbol{\theta}_{t}\right) .
$$

in the QAOA algorithm, the metric tensor can be computed via an additional quantum circuit
single qubit
$H_{C}=\sigma_{z}$

Ising chain

$$
H=\sum_{i=1}^{N} \sigma_{i}^{z} \sigma_{i+1}^{z}-t \sum_{i=1}^{N} \sigma_{i}^{x}
$$

[^0]: uantum computing in the NISQ era and beyond" Preskill, 2018 https:/larxiv.org/abs/1801.00862

