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Quantum Simulations

?1.'s't Conferene on PHYSICS AND

Simulating Physics with omputers

Richard P. Feynman

Now, what kind of physics are we going to imitate? First, I am going to I want to talk about the possibility that there is to be an exact

describe the possibility of simulating physics in the classical approximation, . : :
a thing which is usually described by local differential equations. But the simulation, that the computer will do exactly the same as nature. |

physical world is quantum mechanical, and therefore the proper problem is
the simulation of quantum physics—which 1s what I really want to talk
about, but I'll come to that later. So what kind of simulation do I mean?

International Journal of Theoretical Physics, Vol. 21, Nos. 6/7, 1982



TRAPPED IONS/ATOMS

ANALOGUE
SIMULATIONS

Single atoms/ions trapped in optical lattices
very versatile systems:

- different geometries

- tunable hopping velocities

- controllabile on-site & interaction potentials

- Internal degrees of freedom



QUANTUM COMPUTING

DIGITAL
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Mainly based on superconducting qubits

more developed from commercial side:
- low-T devices

- asy to interface

- scalability

- universality



OTHER IMPLEMENTATIONS

[sing machines
quantum annealing based

photonic
topological materials
cavity QED
quantum dots in silicon
vacancies in diamond
molecular magnets

BUT
DECOHERENCE!
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NISQ
DEVICES
Noisy Intermediate Scale Quantum
where we computing
are today NISQ application areas:

e Quantum chemistry

| / e Optimization
e Machine learning
error correction
— threshold

o
/ fault-tolerant QC
within 5
years
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“Quantum computing in the NISQ era and beyond™ Preskill, 2018 https //anav org/abs/1801. 00862

HYBRID SOLUTIONS: both experiments and protocols
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Applications In:

- classical hard (combinatorial) problems

chemical compounds
condensed matter models
statistical mechanics models and critical phenomena

fundamental interactions: particle physics and gravity

BEHIND: mathematical structure of quantum mechanics
- Hilbert space & operator algebra theory

- Probability (g.) & estimation theory

- Geometry of Hilbert space

- diff equations: Schroedinger or Lindblad



Quantum Approximation Optimization Algorithm (QAOA)
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Quantum-classical loop
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Classical optimization

hybrid protocol: that exploits quantum
resources to span the space of states
and classical techniques for optimization

/

K. Barthi et al.; arXiv:2101.08448

QUANTUM RESOURCES
for preparation of a parametrised
variational state
 embed dof in register of qubits &
define (cost) Hamiltonian whose (H )
has to be minimized
* use a quantum circuit built out of a
set of parametrised unitary operators
to span the the space of possible
ground states |6, ¢)

e make measurements to determine the
objective function (0, ¢ | H-| 0, ¢)

CLASSICAL RESOURCES
and techniques (local gradient, global, machine learning, ...)
to find the optimal values of the parameters and the
corresponding ground state |6, ., @)



e Solution of Combinatorial problems on Graphs (NP-hard)

Max-Cut problem: partition the graph in two sets
of nodes interconnected by the largest number
of links

MIS problem: find the largest set of nodes
not adjacent




Z, Lattice Gauge Theory

electric contribution

HE—Z(l—al

magnetic contribution
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Initialisation of the state

*** Combinatorial Problem

‘ Q()) — ® ‘ 5 7 > e simple product state, prepared by Hadamard gate
%

EMBEDDING of data might be crucial for efficiency
(0,0,1,0,1,---,1,1,1,0) = |y) € X

% Quantum Hamiltonian

such states might have entanglement ->
‘ () B> = Z WF ‘ ¢ E> complicated circuit that cannot be done in parallel on plaquettes
I’

(consistent with results that O(L) circuit depth to
prepare states with topological entanglement)



Parametrised quantum evolution

*** Combinatorial Problem
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% Quantum Hamiltonian  (similar to a Suzuki-Trotter decomposition)

P
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gauge mvariant

m=1

Quantum circuit for each step (m = 1,---, P) of the QAOA to implement the evolutions through H, , H,



Classical optimisation

EP (7/9 :6) - <WP(79 ﬁ) ‘ HC ‘ l//P(% :B)>

Energy landscape -> rugged; barren plateaus

1) Standard gradient-descent methods (Vanilla, Stochastic, ..)

2) Global optimisation (basin-hopping, differential evolution...)
3) Quantum annealing

4) Bayesian approach based on tstaistical inference

5) Natural and Quantum Natural Gradient



s** Combinatorial Problem
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OPLINM AL -~ PATES?2

QAOA EVOLUTION + CLASS. OPT. I

PATH IN HILBERT SPACE

+ ADIABATIC THEOREM PREVENTS EFFICIENT EVOLUTION IF THE HAMILTONIAN GAP BECOMES ZERO:

SHORTCUT TO ADIABATICITY?

+ CAN WE EXPLOIT THE GEOMETRY OF HILBERT SPACE?

GEODESICS?



Optimizers

"o Pick the initial values for .
e (alculate the gradient of the cost function: VE(0).

Vanilla Gradient Descent

e Update the parameters 0, such that:

0t+1 — Ht — UVE(HT)

Natural Gradient Descent

e Compute the Fisher Information Matrix [3]:

dlogp(x,0)\ (Jlogp(x, )
F;:(0) = ). 0 '

e Update the parameters @, such that:

61‘.—1—1 — Ht — 7]F_l(9t)VE(gt)

R_|_ —> H() — (Cd\ {O}

\J
U(l) — S%e-1

o Compute the Fubini-Study metric 4] g(0)
where:
Gii(0 :<‘ - 0
0) =g, 06,/ \og; "
o Update the parameters 6. such that:

9{4_1 — Ht — 7]9_1(91‘)VE(91)

0V 5)'1,")9> <8@39

in the QAOA algorithm, the metric tensor can be computed

via an additional quantum circuit




single qubit [sing chain

Cost function value
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— Gradient descent
— Quantum natural gradient descent
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