
Spectral problems in integrable systems, Grassmannians and
graph theory

Simonetta Abenda (UniBo)

Caligola Workshop ‘A quantum day in Bologna’

June 9, 2023

     

Simonetta Abenda (UniBo) KP, Grassmannians and graph theory



Summary

Left:https://en.wikipedia.org/wiki/Kadomtsev%E2%80%93Petviashvili_equation
Center: Sidewalk at the entrance of St Mary Magdalene’s Church (Bologna, Via Zamboni)
Right:R. Kenyon, A. Okounkov, Notices AMS 2005
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Spectral problems for KP hierarchy and totally non–negative Grassmannians

Wikipedia

𝑷𝟏 𝑷𝒈𝑷𝟐

𝜞
𝑷𝟎

KP− 2 equation [KP− 1970] : (−4ut + 6uux + uxxx )x + 3uyy = 0

is the first member of the most relevant 2 + 1 integrable hierarchy [ZS-1974].

Krichever [Kr-1976] characterized KP finite–gap solutions algebraic-geometrically.
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Spectral problem for real regular KP-2 finite–gap solutions

Real regular finite–gap KP-2 solutions ↔ spectral data on M–curves
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Real regular multiline KP-2 solitons → spectral data on reducible spectral curve [AG-2018a]

[CK-2009],[KW-2014]: Use combinatorial structure of GrTNN(k, n) to characterize the
asymptotic behaviour and tropical limit of Real regular multiline KP-2 solitons

↔
[DN-1988]

→
[AG-2018a]

[AG-2018a,AG-2019,AG-2022c]: Use combinatorial structure of GrTNN(k, n) to get the
spectral data of real regular finite–gap KP-2 solutions solving a degenerate spectral
problem for real regular multiline KP solitons
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Explicit characterization of KP-2 multi–line soliton solutions
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Wronskian method [Mat-1979], [FN-1983], [Mal-1991]:

f (i)(x , y , t) =
∑n

i=1 A
i
j exp(κjx + κ2

j y + κ3
j t), i ∈ [k]

τ(x , y , t) = Wrx (f (1), . . . , f (k)) =
∑

1≤j1<···<jk≤n
∆[j1,...,jk ](A)Ej1,...,jk (x , y , t)

KP-2 soliton solution: u(x , y , t) = 2∂2
x log(τ(x , y , t))

• same u(x , y , t) if recombine rows of A =⇒ [A] ∈ Gr(k, n) = GLR(k)\MatR(k, n)

• u is bounded for real (x , y , t) ⇐⇒ [A] ∈ GrTNN(k, n) = GL+
R (k)\MatTNN

R (k, n)
[KW-2013])
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A breakthrough totally non-negative Grassmannians

� [Lusz-1990s] generalizes the classical notion of total positivity in GLn to reductive
Lie groups and generalized partial flag varietes; cell decomposition of (G/P)≥0
(Rietsch, Ph.D. thesis).

� [Pos-2006] characterizes the cell decomposition of GrTNN(k, n) combinatorially and
using graph theory:

A positroid cell in GrTNN(k, n) is represented by an equivalence class of perfectly
orientable planar bicolored graphs in the disk (real positive weights on edges of the
graph):

n univalent vertices on the boundary of the disk and k of them are sources in
each perfect orientation;

At each internal black vertex, exactly one edge oriented outward;

At each internal white vertex, exactly one edge oriented inward.
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The spectral problem associated to KP-2 solitons and beyond

. Multi-line soliton solutions are represented by points [A] ∈ GrTNN(k, n)

. Direct spectral problem [Mal-1991]: (Γ0 = CP1,P0) and P1, . . . ,Pk ∈ [κ1, κn]

. Inverse spectral problem [AG-2019, AG-2022c]: Postnikov’s graphs G representing
[A] are dual to reducible spectral curves Γ for KP-2 soliton solutions

boundary of disk ↔ Γ0, vertices, CP1, edges ↔ double points, faces ↔ ovals

• Construct and solve a system of relations on G [AG-2022a,AG-2022b] =⇒ value of
KP-2 wave–function at double points and one divisor point in each finite oval
[AG-2022c]

� Total non–negativity =⇒ reality and regularity DN conditions [AG-2018a]

� Kasteleyn theorem rules the system of relations if the graphs is bipartite [A-2021]
← Connection with dimer model!!!

� The construction may be interpreted as amalgamation of little positive
Grassmannians [AG-2022a,AG-2022b] ← Connection with cluster integrable
systems [GK-2013], [GSV-2010] and with the amplituhedron [ABCGPT-2016]
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Soliton lattices of KP-2 and desingularization of spectral curves in
Gr TP(2, 4) [AG-2018b]
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0 = P0(λ, µ) = µ ·
(
µ− (λ− κ1)

)
·
(
µ+ (λ− κ2)

)
·
(
µ− (λ− κ3)

)
·
(
µ+ (λ− κ4)

)
.

Genus 4 M–curve after desingularization:

Γ(ε) : P(λ, µ) = P0(λ, µ) + ε(β2 − µ2) = 0, 0 < ε� 1,

β = κ4−κ1
4

+ 1
4

max {κ2 − κ1, κ3 − κ2, κ4 − κ3},
κ1 = −1.5, κ2 = −0.75, κ3 = 0.5, κ4 = 2.

Level plots for KP-II finite gap solutions: ε = 10−2 [left], ε = 10−18 [right].
Horizontal axis is −60 ≤ x ≤ 60, vertical axis is 0 ≤ y ≤ 120, t = 0.
White (black) = lowest (highest) value of u.
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Dimer models on surface graphs (with boundaries)

• Dimer models were introduced in [Kas-1961] and [TF-1961] to describe crystal
surfaces at equilibrium like partially dissolved salt crystals.

• States in dimer models are perfect matchings between vertices of the graph where
only adjacent vertices are matched. If the surface has boundaries, all internal vertices
have to be matched.

• The probability of a state is the product of the edge weights of the dimer
configuration.

• The partition function can be written as a linear combination of N Pfaffians of
m ×m Kasteleyn matrices, where

m = number of vertices

N = number of non equivalent Kasteleyn orientations of the surface graph. N
depends on genus g and boundary components of the surface where the graph is
embedded. [Kas-1961], [GL-1999], [Tes-2000], [CR-2008]

• g = 1 =⇒ N = 4

• The most studied case is g = 1: [GK-2013] associate quantum integrable systems to
dimer models on bipartite graphs on a torus in such a way that the positive part of the
phase space coincides with the assignment of algebraic geometric data on the ovals of
the Harnack curves associated to such models in [KO-2006]
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g = 0: dimer models on bipartite planar graphs in the disk and Gr TNN(k , n)

[PSW-2009]: Dimer configuration on G = (V = B ∪W, E) is a collection M of edges
of G that contains exactly once internal vertices, and at most once the n boundary
vertices.

k = ∂M = {i ∈ [n] : black boundary vertex bi ∈ M} ∪
{i ∈ [n] : white boundary vertex bi 6∈ M}.

Perfect orientations ⇐⇒ dimer configurations

Example: GrTP(3, 6):

𝒃𝟏𝒃𝟓𝒃𝟔 𝒃𝟒 𝒃𝟑 𝒃𝟐 𝒃𝟏𝒃𝟓𝒃𝟔 𝒃𝟒 𝒃𝟑 𝒃𝟐
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Boundary measurement maps in Gr TNN(k , n) and dimer partition functions

𝒕𝟐𝟑𝒕𝟐𝟓
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[Pos-2006]: [A] ∈ GrTNN(k, n):

Ar
j = (−1)σir j

∑
P:bir 7→bj

(−1)Wind(P)wt(P)

σir j = #{ sources between ir and j};

𝒃𝟏𝒃𝟓𝒃𝟔 𝒃𝟒 𝒃𝟑 𝒃𝟐

[Lam-2016]: Weight of dimer state M:

wt(M) =
∏

e∈M
wt(e)

The partition function Z(G ,wt; ∂M)

relative to ∂M = I is the I -th

Plücker coordinate of [A] ∈ GrTNN(k, n):

Z(G ,wt; ∂M) =
∑

M : ∂M=I
wt(M) = DI (A)
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Kasteleyn sign matrix and Postnikov boundary measurement map

𝒃𝟒
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[AG-2022a,AG-2022b]: To each planar bicolored graph in the disk, we associate a
system of relations ruled by a unique equivalence class of signatures σ which gives
Postnikov boundary measurement map and solve it at internal vertices generalizing
[Tal-2008].

[A-2021]: For bipartite graphs in the disk σ is the Kasteleyn signature characterized
topologically in [Sp-2016]: maximal minors det(Kwt)I of the Kasteleyn matrix Kwt

(Kwt)wb =

{
σb,wwtb,w , if (b,w) is an edge;
0, otherwise,

are the dimer partition functions Z(G ,wt; ∂M) for ∂M = I , that is the Plücker
coordinates DI (A) of [A] ∈ GrTNN(k, n) represented by the given network:

det(Kwt)I = Z(G ,wt; ∂M) =
∑

M : ∂M=I
wt(M) = DI (A)

Kwt 7→

N n( )
N IdN ∗
k 0 A
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Kasteleyn system of relations and KP wave function

• Kwt Kasteleyn matrix V a vector space

Kasteleyn system of relations (v (k) = {v (k)
b : b ∈ B},Rw ):

. v
(k)
b is an element in V assigned to the black vertex b ∈ B;

. At white vertex w ∈ W: Rw (v (k)) ≡
∑
b∈B

(Kwt)wb v
(k)
b ≡

∑
b∈B

σbw wtbw v
(k)
b = 0.

� [A-2021]: KP soliton wave function on Γ0: 0 ≡ Dfi (~x) ≡
∑n

j=1 A
i
j ψ(κj , x , y , t)

𝒃𝟒
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Assign at boundary vertex bj : v
(k)
bj

= ψ(κj , x , y , t)

Solve the system and get ψ(κ, x , y , t)

at the double points of the reducible curve!

� [AG-2022a], [AG-2022b]: explicit solution to the system of relations =⇒

[AG-2022c]: explicit computation of the KP wave - function at double points and of
the KP divisor.
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Open problems

• Classification of M–curves associated to Postnikov plabic graphs ([A-2017]: Le-graph
for Gr+(1, n) are hyperelliptic genus n − 1; [AG-2018b]: Gr+(2, 4) is trigonal genus 4)

• Identify varieties in positroid cells associated to reductions of KP-hierarchy (KdV,
Boussinesq, ...)

• Understand connection with Kodama-Williams classification of asymptotic behavior
of KP-solitons and tropical limit

• Use systems of relations to solve other problems in integrable systems/statistical
mechanics/theoretical physics for surface graphs with boundaries.
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