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Summary

Right:R. Kenyon, A. Okounkov, Notices AMS 2005

Left:https://en.wikipedia.org/wiki/Kadomtsev%E2%80%93Petviashvili_equation
Center: Sidewalk at the entrance of St Mary Magdalene’s Church (Bologna, Via Zamboni)
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Spectral problems for KP hierarchy and totally non—negative Grassmannians

Wikipedia

M.A. Ablowitz and D.E. Baldwin Phys. Rev E, v. 86 (2012)

KP — 2 equation [KP —1970] : (—4u: + 6uux + tox)x + 3uyy =0

is the first member of the most relevant 2 4 1 integrable hierarchy [ZS-1974].
Krichever [Kr-1976] characterized KP finite—gap solutions algebraic-geometrically.
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Spectral problem for real regular KP-2 finite—gap solutions

Real regular finite—gap KP-2 solutions <>  spectral data on M—curves

<
[DN-1988]

—
[AG-2018a]

Real regular multiline KP-2 solitons — spectral data on reducible spectral curve [AG-2018a]

[CK-2009],[KW-2014]: Use combinatorial structure of Gr™V(k, n) to characterize the
asymptotic behaviour and tropical limit of Real regular multiline KP-2 solitons

[AG-2018a,AG-2019,AG-2022c]: Use combinatorial structure of Gr™N(k, n) to get the
spectral data of real regular finite—gap KP-2 solutions solving a degenerate spectral
problem for real regular multiline KP solitons
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Explicit characterization of KP-2 multi-line soliton solutions
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Wronskian method [Mat-1979], [FN-1983], [Mal-1991]:
FO(x,y,t) = o0, Alexp(rjx + k2y + K3t), i€ [K]

T(ny’ t): Wrx(f(l)"'~7f(k)): Z A[jl,m,jk](A)Ejl,...,jk(ny, t)
1< <<k <n

KP-2 soliton solution: u(x,y, t) = 282 log((x, y, t))

e same u(x, y, t) if recombine rows of A = [A] € Gr(k, n) = GLgr(k)\Matgr(k, n)

e u is bounded for real (x,y,t) <= [A] € Gr"™"N(k,n) = GL{ (k)\Matg"N(k, n)
[KW-2013])

=] (=)
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A breakthrough totally non-negative Grassmannians

¢ [Lusz-1990s] generalizes the classical notion of total positivity in GL, to reductive
Lie groups and generalized partial flag varietes; cell decomposition of (G/P)>g
(Rietsch, Ph.D. thesis).
¢ [Pos-2006] characterizes the cell decomposition of Gr™N(k, n) combinatorially and
using graph theory:
A positroid cell in Gr™N(k, n) is represented by an equivalence class of perfectly
orientable planar bicolored graphs in the disk (real positive weights on edges of the
graph):

@ n univalent vertices on the boundary of the disk and k of them are sources in

each perfect orientation;
@ At each internal black vertex, exactly one edge oriented outward;

@ At each internal white vertex, exactly one edge oriented inward.
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The spectral problem associated to KP-2 solitons and beyond

> Multi-line soliton solutions are represented by points [A] € Gr™N(k, n)
> Direct spectral problem [Mal-1991]: (Fg = CPY, Py) and Pi,..., Py € [k1, kn]

> Inverse spectral problem [AG-2019, AG-2022c]: Postnikov’s graphs G representing
[A] are dual to reducible spectral curves I' for KP-2 soliton solutions

boundary of disk <+ g,  vertices, CP?, edges ++ double points, faces <> ovals
e Construct and solve a system of relations on G [AG-2022a,AG-2022b] = value of
KP-2 wave—function at double points and one divisor point in each finite oval
[AG-2022(]

© Total non—negativity = reality and regularity DN conditions [AG-2018a]

o Kasteleyn theorem rules the system of relations if the graphs is bipartite [A-2021]
<— Connection with dimer model!!!

© The construction may be interpreted as amalgamation of little positive
Grassmannians [AG-2022a,AG-2022b] < Connection with cluster integrable
systems [GK-2013], [GSV-2010] and with the amplituhedron [ABCGPT-2016]

= V=7 =Y =7

Gr'(L9) Gr'@d)
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Soliton lattices of KP-2 and desingularization of spectral curves in
Gr™*(2,4) [AG-2018b]
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re) : PO\ p) = Po(A ) +e(B2 —p?) =0, 0<exl,
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Level plots for KP-II finite gap solutions: € = 1072 [left], e = 1078 [right]
Horizontal axis is —60 < x < 60, vertical axis is 0 < y <120, t=0
White (black) = lowest (highest) value of u
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Dimer models on surface graphs (with boundaries)

e Dimer models were introduced in [Kas-1961] and [TF-1961] to describe crystal
surfaces at equilibrium like partially dissolved salt crystals.

e States in dimer models are perfect matchings between vertices of the graph where
only adjacent vertices are matched. If the surface has boundaries, all internal vertices
have to be matched.

e The probability of a state is the product of the edge weights of the dimer
configuration.

e The partition function can be written as a linear combination of N Pfaffians of
m X m Kasteleyn matrices, where
@ m = number of vertices
@ N = number of non equivalent Kasteleyn orientations of the surface graph. N

depends on genus g and boundary components of the surface where the graph is
embedded. [Kas-1961], [GL-1999], [Tes-2000], [CR-2008]

° g:l — N =4

e The most studied case is g = 1: [GK-2013] associate quantum integrable systems to
dimer models on bipartite graphs on a torus in such a way that the positive part of the
phase space coincides with the assignment of algebraic geometric data on the ovals of
the Harnack curves associated to such models in [KO-2006]
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g = 0: dimer models on bipartite planar graphs in the disk and Gr™"(k, n)

[PSW-2009]: Dimer configuration on G = (V = BUW, E) is a collection M of edges
of G that contains exactly once internal vertices, and at most once the n boundary

vertices.
k=0M = {i € [n] : black boundary vertex b € M} U
{i € [n] : white boundary vertex b; ¢ M}.

Perfect orientations <= dimer configurations

Example: Gr'P(3,6):

be bg by by b, by 'bs bs by by by by
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Boundary measurement maps in Gr™"(k, n) and dimer partition functions

[Pos-2006]: [A] € Gr™N(k, n):

AJ( — (71)01.’/. Z (71)Wind(P)Wt(P)
P:b;, > b;

0;,j = #{ sources between J; and j};

[Lam-2016]: Weight of dimer state M:
wt(M) = T] wt(e)

ecM
The partition function Z(G, wt; OM)
relative to OM = | is the /-th
Pliicker coordinate of [A] € Gr™N(k, n):

‘b bs by by by by

Z(G, wt; OM)

[

g
g

E
[

Dy(A)
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Kasteleyn sign matrix and Postnikov boundary measurement map

[AG-2022a,AG-2022b]: To each planar bicolored graph in the disk, we associate a
system of relations ruled by a unique equivalence class of signatures o which gives
Postnikov boundary measurement map and solve it at internal vertices generalizing
[Tal-2008].

[A-2021]: For bipartite graphs in the disk o is the Kasteleyn signature characterized
topologically in [Sp-2016]: maximal minors det(K""); of the Kasteleyn matrix K"t

(K" = ObwWtpw, if (b,w) is an edge;
b 0, otherwise,

are the dimer partition functions Z(G, wt; 9M) for OM = [, that is the Pliicker
coordinates D;(A) of [A] € Gr™N(k, n) represented by the given network:

det(K*) = Z(G,wtioM) = 5 wi(M) = Di(A)

N n

ket o N [ldy | =
Kk \o | A
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Kasteleyn system of relations and KP wave function

e K"t Kasteleyn matrix V' a vector space

Kasteleyn system of relations (v(k) = {vlgk) :be B}, Ru):

> v[()k) is an element in V assigned to the black vertex b € B;

> At white vertex w € W: Ry, (vK)) = 3O (K™Y vl(,k) = > Opw Wiy vék) =0.
beB beB

o [A-2021]: ’ KP soliton wave function on lo: 0 = Dfi(X) = 307, Aj‘: P(Kj, X, ¥, t)

Assign at boundary vertex b;: "t(;vk) =(Kj, X,y t)
J

Solve the system and get 9(k, x, y, t)

at the double points of the reducible curve!

o [AG-2022a], [AG-2022b]: explicit solution to the system of relations ——

[AG-2022c]: explicit computation of the KP wave - function at double points and of
the KP divisor.
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Open problems

e Classification of M—curves associated to Postnikov plabic graphs ([A-2017]: Le-graph
for Gr*(1, n) are hyperelliptic genus n — 1; [AG-2018b]: GrT(2,4) is trigonal genus 4)

e Identify varieties in positroid cells associated to reductions of KP-hierarchy (KdV,
Boussinesq, ...)

e Understand connection with Kodama-Williams classification of asymptotic behavior
of KP-solitons and tropical limit

e Use systems of relations to solve other problems in integrable systems/statistical
mechanics/theoretical physics for surface graphs with boundaries.
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