The Geometry of Deep Learning. Lecture 1: Overview

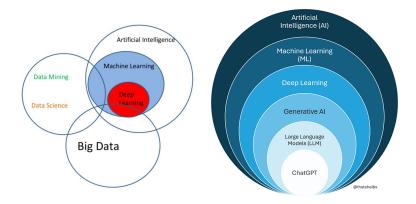
Rita Fioresi, FaBiT, Unibo

December 11, 2025

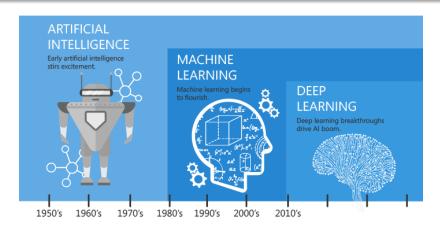
Plan of the course

- Introduction to Deep Learning (DL)
- Information Geometry
- Neurogeometry and Deep Learning
- Geometric Deep Learning (GDL)
- Graph Neural Networks (GNN)
- Generative AI (GenAI)

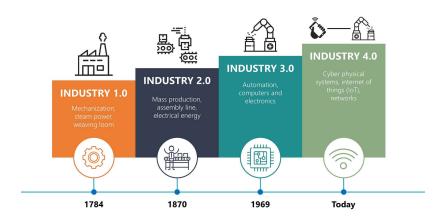
AI, Machine Learning, Deep Learning and GenAI



AI, Machine Learning and Deep Learning

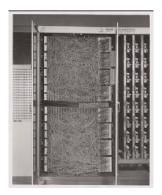


Industry 4.0



Some History: The Perceptron, a binary classifier

The first neural network: Mark I Perceptron (1957 Rosenblatt). Navy Lab, Cornell University.



First Neural Network

Perceptron (1957 Rosenblatt): algorithm for binary classification.

$$f(x) = \begin{cases} 1 & \text{if } w \cdot x + b > 0 \\ 0 & \text{otherwise} \end{cases}$$

Data (input and labels):

$$D = \{(\mathbf{x}_1, d_1), \dots, (\mathbf{x}_s, d_s)\}$$

Training set with s example.

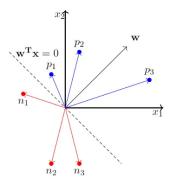
 $x_{j,i}$ value of the *i*-th feature of the *j*-th input.

w weight vector.

Functioning of Perceptron: binary classification

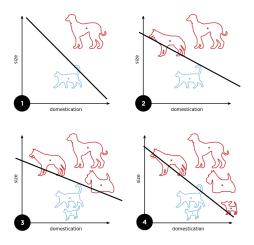
Algorithm: Perceptron Learning Algorithm

inputs are classified correctly



Linear Classification

Perceptron works only for linearly separable datasets.



Algorithms of Machine Learning

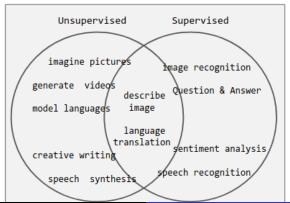
Machine Learning



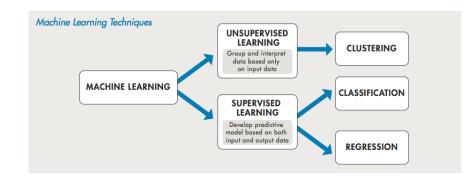
Learning

Types of Learning

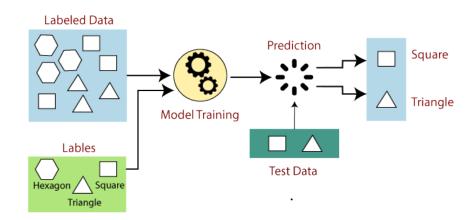
- **Supervised**: weights are learned with backpropagation (perceptron).
- Semisupervised, reinforced: data il learned via interaction with world.
- Unsupervised.



Supervised/Unsupervised Learning



Machine Learning Cycle (supervised)



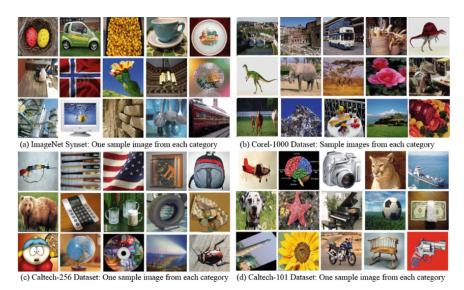
Imagenet Challenge ILSVRC: ImageNet Large Scale Visual Recognition Challenge

- **2010** 20000 images, 20 categories, 25% error.
- 2011 1 million images, 1000 categories: 16% error.
- 2015 1 millione images, 1000 categories: 4% error.

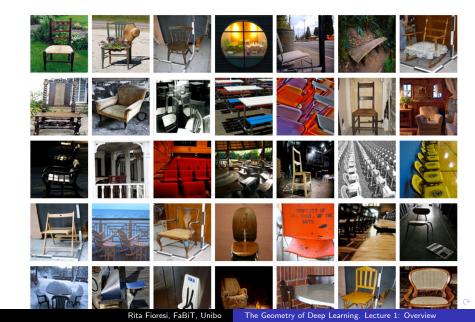
2017: the challenge is declared won.



Images in Imagenet



Images in Imagenet category "chair"

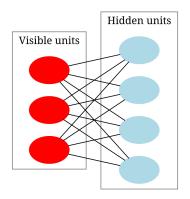


The winners

- 2012 Alexnet: Error 15% Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton (first CNN)
- 2013 ZF Net: Error 11% Matthew Zeiler, Rob Fergus, NYU.
- 2014 VGG Net: Error 7.3% Karen Simonyan, Andrew Zisserman, University of Oxford
- **2014 GoogLeNet**: Error 6.7%
- **2015 Microsoft ResNet**: Error 3.6%

2024 Nobel Prize winner: Geoffrey Hinton

Digression: Restricted Boltzmann Machines



Benchmark Datasets/1

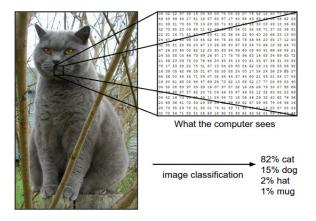
MNIST

```
00000000000000000
 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
4444444444444
66666666666666666
   7 7 7 7 7 7 7 7 7 7 7
99999999
```

Benchmark Datasets/2

CIFAR10

What does a computer see?



 $Image = set \ of \ pixels = matrix$

3: RGB channels (Red Green Blue)

Every coordinate is a number between 0 and 255.

Linear Classifier

The problem: 50000 images $32 \times 32 \times 3$ in 10 categories (database CIFAR).

Score (classifier):

$$f(x)_r = \sum_{r=1}^{10} W_{rs} x_s + b_r$$

W weight matrix (inizialized randomly).

x image vector

f(x) gives a score to each class: the higher score gives the answer.

Cross Enthropy Loss via Softmax

The Softmax function:

$$S(\mathbf{z})_i = rac{\mathrm{e}^{z_i}}{\sum_{j=1}^K \mathrm{e}^{z_j}} \quad ext{ for } i=1,\ldots,K ext{ and } \mathbf{z}=(z_1,\ldots,z_K) \in \mathbb{R}^K.$$

takes as input a vector $z \in \mathbb{R}^K$, and normalizes it into a mass probability distribution.

The Loss function

$$L_i = -log \frac{e^{f_{y_i}}}{\sum_j e^{f_j}} = -f_{y_i} + log \sum_j e^{f_j}, \qquad L = \sum_i L_i$$

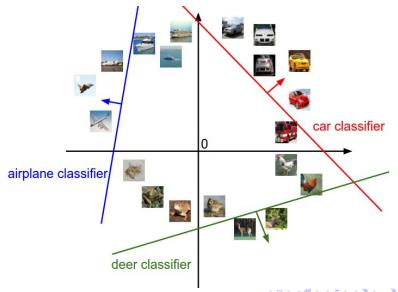
y_i: label of the i-th image class

Bias: b_i influence the score but do not depend on images.

Regularization: added to level the weights.

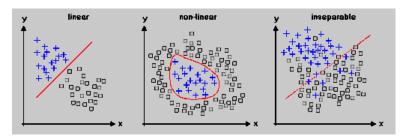
Linearly separable Databases

A linear classifies works only if database is linearly separable:

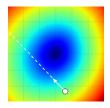


Non Linearly separable datasets

Non linear classifier works only if database is separable by curves and surfaces in some easy way.



Gradient Descent



Update of the weights:

$$w_{ij}(t+1) = w_{ij}(t) - \alpha \nabla L_{\text{stoc}}$$

Stochastic Gradient: $\nabla L_{\text{stoc}} = \sum_{i=1}^{32} \nabla L_{\text{rand(i)}}$

True Gradient: $\nabla L = \sum_{i=1}^{50000} \nabla L_i$

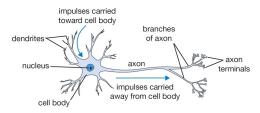
Epoch: when we estimate almost all the images were examined via

random sampling.

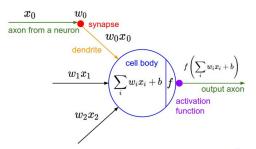
Learning rate: α (thermodynamical analysis: temperature).

A neuron as a linear classifier (perceptron)

Biological neuron

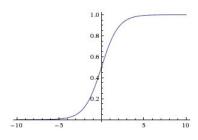


Artificial neuron

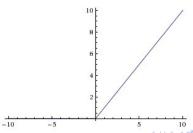


Activation Functions

Sigmoid



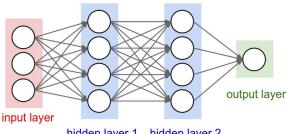
• RELU (Rectifying Linear Unit)



Neural Networks (not convolutional)

Neural Network with two hidden layers

$$f(x) = W_3 max(0, W_2 max(0, W_1 x))$$



hidden layer 1 hidden layer 2

Convolutional Neural Networks

Convolutions: extract *features* from a given image.

Key: discrete convolution via filters

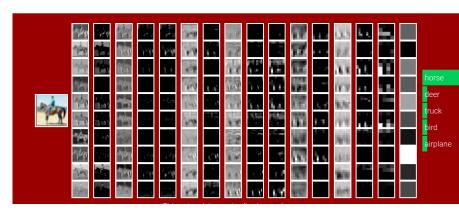
Stanford CS231 Convolutions

Deep Learning in action: CS231 Stanford

CS231n: Convolutional Neural Networks for Visual Recognition

Spring 2020

Previous Years: [Winter 2015] [Winter 2016] [Spring 2017] [Spring 2018] [Spring 2019]



Programming Deep Learning/1

Main programming tools: TensorFlow (Google), PyTorch (Facebook).

Environment: Colab

Computer: GPU (NVidia) replacing CPU!

Programming parallel and object oriented:

Forget "if else" and "loops"!

Replace "if else" and "loops: with masks and broadcast:

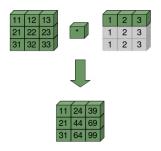
we read an array at once in the memory.

Numpy: redefines all objects, overloads operators.

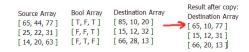
High Level Programming. PyTorch allows CNN programming with few lines of code.

Programming Deep Learning/2

Broadcasting



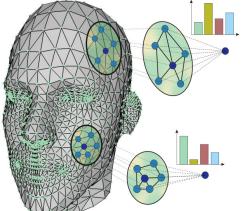
Masks



Graph Neural Networks GNN

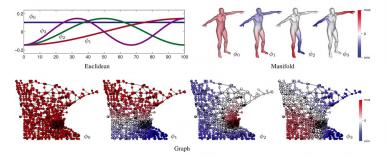
Geometric Deep Learning: Bronstein et al, 2016.

- Do convolutions on graphs (called "non euclidean domains")
- Manipulate complex and heterogeneous datasets (beyond image recognition)
- Effectively work on 3D images

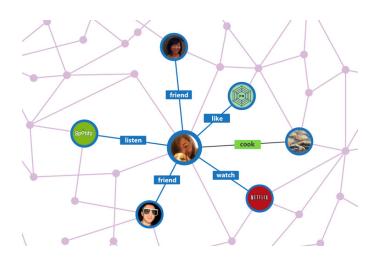


Geometric Deep Learning/2

The eigenfunctions of the laplacian form the smoothest-possible basis function over a specific graph (they minimize the Dirichlet energy).



Geometric Deep Learning/3



Generative AI: Transformers and Chat-gpt

