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Abstract8

Nakamoto’s blockchain protocol implements a distributed ledger on peer-to-peer asynchronous9

networks. In this paper we study so-called forks that may devolve the ledger into inconsistent10

copies. We define the behaviour of blockchain’s key participants – the miners – as stochastic pi11

calculus processes and describe the whole system as a parallel composition of miners. We therefore12

compute the probability that ledgers turn into a state with more severe inconsistencies, e.g. with13

longer forks. The instances of this probability with current rate-values give upper-bounds for Bitcoin14

and Ethereum. We also study how the presence of hostile nodes mining blocks in wrong positions15

impacts on the consistency of the ledgers.16
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1 Introduction22

Blockchain is an emerging technology that implements a distributed ledger on peer-to-peer23

asynchronous networks that are dynamic (nodes may either join or leave) [19]. It enables many24

applications, including cryptocurrencies – the Bitcoin is the most famous one –, decentralized25

applications – the Ethereum smart contracts are very popular nowadays –, voting systems26

and other application specific protocols.27

When implementing a distributed ledger on a dynamic peer-to-peer asynchronous network28

one has to address the problem of inconsistent updates of the ledger performed by different29

nodes. This problem is actually a distributed consensus variant, which has been known to30

be unsolvable since 1985 [9]. To overcome this shortcoming, blockchain uses an ingenious31

breakthrough: it guarantees a so-called eventual consistency whereby the various replicas of32

the ledger may be temporarily inconsistent in at most the last m blocks.33

The blockchain protocol is very complex and the current research is actively involved34

in understanding all the critical points because they might be used for designing possible35

attacks. For example, inconsistencies of the ledger replicas, which are called forks, may be36

used to rewrite the transaction histories and making the blockchain devolve to a wrong37

state. This might be due to adversaries that are powerful enough to create new blocks more38

frequently than others (e.g. have a larger hashing power for mining blocks than other nodes).39

Or it might be due to adversaries that broadcast their block updates more quickly than other40

nodes (e.g. the delays of communications is larger for a subset of senders than for others41

because, for instance, they are better connected to the network). Or because new nodes are42

entering in the protocol and may cluster their decisions. Or even to a wrong ratio between43

the mining rate and the number of (honest) nodes in the network. Forks of significative44

lengths T already occurred in blockchain-based systems: in March 2013 a 24-blocks fork45
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occurred in Bitcoin because some nodes upgraded their software to a version creating blocks46

that were not recognized by nodes running the older version. (This fork was resolved by47

human intervention, rejoining the chain of old-versioned block, with a loss of block rewards.)48

Two other forks, in summer and fall 2017, were driven by the Bitcoin Community and led to49

two different cryptocurrencies: Bitcoin Cash and Bitcoin Gold. Ethereum has experimented50

a more dramatic fork in the summer 2016, in correspondence of the TheDAO attack. In51

this case, no agreement was found (whether rolling-back or not) and Ethereum split in two52

incompatible branches (Ethereum and Ethereum Classic).53

Blockchain is a concurrent system with asynchronous communications between nodes54

called miners (we are sticking to the key participants of the protocol). Henceforth, in order55

to model blockchain formally, we decided to describe it by means of a process calculus56

where the system is viewed as a parallel composition of processes whose basic actions are57

communications and internal moves. However, actions have a duration in blockchain, i.e. they58

require time to be completed. For example, this is the case for minting a block by a node or59

for broadcasting blocks in the network. To model this feature faithfully we were forced to60

use a stochastic variant of process calculi. In particular, since the durations of mining or61

broadcasting actions can be expressed by an exponential distribution with a so-called rate62

parameter [1, 26, 8, 3], it turned out that the correct mathematical framework of blockchain63

corresponds to a Continuous Time Markov Chain transition system. This is why the process64

calculus we have chosen is the stochastic pi calculus [24, 4] (actually an extension of it that65

includes ledgers). In Section 3 we define our calculus. In this calculus, all enabled actions in66

a state attempt to proceed, but fastest ones succeed with higher probabilities; e.g. if a state67

has n outgoing transitions with rates r1, · · · , rn, the probability that the i-th transition is68

taken is ri/(
∑

1≤j≤n rj).69

The ledgers and their properties are described in Section 2, following the ledger description70

in [19]. The modelling of the blockchain protocol is given in Section 4. In this section we71

also compute the probability of devolving into a “larger inconsistency”, e.g. transiting from a72

state with a fork of length m to a state with a fork m+ 1. This probability, which depends73

on the number of nodes, their hashing power and the latency of the network, has required a74

time-consuming analysis of the stochastic transition system due to the state explosion with75

respect to the number of nodes. According to our results, given the current rate-values, the76

above probability is less than 10−3 in the Bitcoin system, while it is less than 10−2 in the77

Ethereum system. We notice that these upper bounds simply follow by instantiating the78

formula we compute with the rate-values of the two systems.79

In Section 5 we apply the same technique to analyze an attack to blockchain that has been80

already studied in [19]: the presence of hostile nodes mining new blocks in positions that are81

different from the correct one (the first block inserted at maximal depth). The probability82

that we compute depends on the hashing power of the attacker and the depth m of the fork83

created by the hostile node. For example, if BTC.com, which is a cluster currently retaining84

the 14,7% of the Bitcoin hashing power, decided to become hostile, then the probability to85

create an alternative attacker chain and achieving consensus from the other nodes is 6−m.86

We report our concluding remarks in Section 6. For space constraints, the proofs of the87

main statements are omitted; reviewers may find them in the Appendix.88

Related work.89

The blockchain protocol was introduced by Haber and Stornetta [13] and only in the last few90

years, because of Bitcoin, the problem of analyzing the consistency of the ledgers has caught91

the interest of several researchers. In [10], Garay et al. demonstrate the correctness of the92
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protocol when the network communications are synchronous, focusing on its two key security93

properties: Common Prefix and Chain Quality. The first property guarantees the existence94

of a common prefix of blocks among the chain of honest players; Chain Quality constrains the95

number of blocks mined by hostile players, when the honest players are in the majority and96

follow the protocol. The extension of this analysis to asynchronous networks with bounded97

delays of communications and with new nodes joining the network has been undertaken98

in [21]. In the above contributions, the properties are verified by using oracles that drive the99

behaviours of actors. Then, combining the probabilistic behaviours and assuming possible100

distributions, one computes expected values. In contrast with the above works, in [23], Pirlea101

and Sergey propose a formalization of blockchain consensus focusing on the notion of global102

system safety. They present an operational model that provides an executable semantics of103

the system where nondeterminism is managed by external schedules and demonstrate the104

correctness by means of a proof assistant. The main difference between these contributions105

and our work is that we formalize the blockchain protocol as a stochastic system (with106

exponential distribution of durations) and derive the properties by studying the model.107

In fact, the probabilities that we compute are, up-to our knowledge, original. As regards108

stochastic models and blockchain, few recent researches use them to select optimal strategies109

for maximizing profit of a player [1] and for formalizing interactions between miners as a110

game [5, 2].111

A number of researches address attacks to the blockchain protocol. The works [6, 25, 12]112

address the delays of communications and [25] also demonstrates that an attacker with more113

than 51% of the total hashing power could change the past transactions. A larger set of114

attacks is analyzed in [18, 10, 21], where it is also proved that the blockchain protocol is115

safe as long as honest miners are in the majority. In [20], Ozisik and Levine give a very116

detailed description of Nakamoto’s double spending attack, gathering the mathematics for117

its modelling. The probability of a successful double spending attack in several scenarios118

(both fast and slow payments) is analyzed in [16]. Finally, a fully implemented attack against119

Ethereum blockchain, which covers both a network and a double spending attack, is delivered120

in [7]. In contrast with these contributions, our results are achieved by analyzing a stochastic121

transition system, rather than constraining miners’ behaviour to adhere to a certain statistical122

model.123

2 The ledger datatype124

A ledger, noted L, L′, · · · , is a pair (T, h) where T is a nonempty tree of blocks and h is the125

handle, e.g. a pointer to a leaf block at maximal depth. We note T with tree(L) and h with126

handle(L). The root of tree(L) is called genesis block. Every block b in tree(L) has a pointer127

to its parent that is addressed by b.id; the set of blocks in L is addressed by L.blocks. The128

following picture illustrates two ledgers – L1 and L2 where the handles are blue pointers.129
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The blockchain of L, noted L ↑, is the sequence [b0, b1, b2, · · · ] such that b0 = handle(L) and,131

for every i, bi+1 is the parent of bi (therefore the last block of the sequence is the genesis132

block).133

A key operation of ledger is addBlock(L, b) that returns a ledger where b is connected134

to the block pointed by b.id. This operation may change the handle of the ledger. In135

particular, the handle of addBlock(L, b) is equal to the handle of L if the new block has not136

changed the maximal depth of the tree; it is a pointer to b if this block has a depth strictly137

greater than the maximal one of L. For example, considering the ledgers L1 and L2 in the138

foregoing picture, let b3C.id be a pointer to b2B and b4.id be a pointer to b3B . The ledgers139

addBlock(L1, b3C) and addBlock(L1, b4) are140
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In particular, the handle of addBlock(L1, b3c) is the same of L1, while L1 handle is different142

from the one of addBlock(L1, b4) because, in this case, the depth of the tree is changed.143

3 The modelling language144

Our modelling language is a stochastic pi calculus with lists and ledgers datatypes. We use145

three countable sets: names, ranged over by x, y, z, · · · ; process names, ranged over by A, B,146

· · · ; variables X, Y , Z, · · · . As usual, we address tuples with u. The stochastic pi calculus147

has three syntactic categories, values written u, matches written M , and processes written148

P . The grammar is detailed below.149

P
def= M | (ν x@r) P | P | P | A(e) processes

M
def= if e then M else M | Σ conditional summands

Σ def= 0 | τr.P + Σ | x?(X).P + Σ | x!e.P + Σ summands
e

def= x | X | b | l | L | op(e, e) expressions

150

A process can be a conditional summand M , a restricted process of the form (ν x@r) P151

where x is a new (channel) name with rate r, with r ∈ R+, whose scope is P , a choice, a152

parallel composition, an if-then process, or a process name invocation A(e), in which case153

we ask for a unique equation A(X) = P defining A. Additionally, in equations A(X) = P ,154

we assume that recursive invocations of A are guarded by an input or output or an internal155

move.156

A conditional summand M is a cascading nesting of if-then-else conditionals where basic157

elements are summands Σ. In turn, Σ can be a choice between processes that are either the158

inert process 0, a process τr. P performing an internal move at rate r and becoming P , an159

input x?(X).P , an output x!e.P . The number of summands in Σ is denoted by |Σ|.160
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Expressions are names, variables, (unspecified) blocks b, · · · , lists l of blocks, ledgers161

L, and operations on these elements, generically addressed by op(e, e′). The empty list is162

denoted ε; a list containing the elements b1, · · · , bn is denoted [b1, · · · , bn]; lab returns163

the list appending b to l. We use the operation l = ε, which is true if l is empty, false164

otherwise; the operations head(l) and tail(l) that, when l is nonempty, return the head and165

tail of l, respectively. The ledger G represents the initial ledger containing the genesis block166

only (with an abuse of notation, the genesis block will be also addressed by G).167

Expressions are evaluated into values, which are names, blocks, lists and ledgers. We168

assume defined an evaluation function JeK that returns the value of an expression e that does169

not contain variables (it is undefined, otherwise).170

Variables represent formal parameters of a process name definition or of an input operation171

and, sometimes, when the corresponding parameter is a name, we simply use a name rather172

than a variable. Restrictions bind names, that is (ν x@r) P binds the name x wherever173

it is free in P and likewise, input and agent definition bind variables, that is x?(X).P and174

A(X) = P bind the free occurrences of the variables X in P . Names and variables that are175

not bound are called free as usual and we write fn(P ) for the set of such names and variables176

in P .177

I Definition 1. The equality, noted ≡, is the least equivalence on processes containing178

alpha-conversion of bound names, associativity of | with identity 0 and containing179

(ν x@r) 0 ≡ 0
(ν x@r) (ν y@r′) P ≡ (ν y@r′) (ν x@r) P

(ν x@r) (P | Q) ≡ P | (ν x@r) Q if x /∈ fn(P )
A(u) ≡ P{u/X} if A(X) = P

180

Because of the axioms of ≡, we abbreviate P1 | · · · | Pn into
∏
i∈1..n Pi. A process P is181

in canonical form whenever P is equal to (ν x@r)
∏
i∈IMi . It is easy to verify that, for182

every P , there is always a P ′ in canonical form such that P ≡ P ′.183

Table 1 collects the intensional semantics of the stochastic pi calculus. This semantics is184

described as a transition system on syntactic processes with transitions labelled by certain185

terms. According to Table 1, there are three types of transitions: (i) for conditional summands186

M
µ,h7−→ P , where µ is either r or x?(Y ) or x!u and h represents the index of the addend187

in M that transits; (ii) P µ,`7−→ P ′, where ` = k · h indicates the index k of the conditional188

summand M in P that transits and the index h of the addend in M ; (iii) P ν,`,`′

7−→ P ′, where189

ν is either r or x and `, `′ are the indexes of the two subprocesses that move.190

The intensional semantics of stochastic pi calculus performs an accurate estimation of191

positions of processes that actually move. In rules [tau], [inp] and [out], the transition’s192

label records both the move and the position of the process in the moving summand. In193

oder to determine k, in [par], we single out the parallel subprocess where the rightmost194

component moves. Then, according to [com-l] and [com-r], communications may happen195

between contiguous subprocesses only. In this case, the k-index of the subprocess to the196

right is updated according to the corresponding value of the process to the left. Once a197

communication has been singled-out, [par-p] admits liftings of transitions to contexts where198

the parallelism is to the right, consequently, the positions in the labels remain unchanged.199

I Definition 2. The structural equivalence, noted ≡+, is the least equivalence on processes200

containing equality ≡ and containing commutativity and associativity of | and + with identity201

0.202
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[tau]
|Σ| = h

Σ + τr.P + Σ′ r,h+17−→ P

[inp]
|Σ| = h

Σ + x?(Y ).P + Σ′ x?(Y ),h+17−→ P

[out]
JeK = u |Σ| = h

Σ + x!e.P + Σ′ x!u,h+17−→ P

[if-true]

JeK = true M
µ,h7−→ P

if e then M else M ′ µ,h7−→ P

[if-false]

JeK = false M ′
µ,h7−→ P

if e then M else M ′ µ,h7−→ P

[par]

Q =
∏
i∈1..k−1 Mi M

µ,h7−→ P

Q | M
µ,k·h7−→ Q | P

[par-p]

P
ν,`,`′

7−→ P ′

P | Q
ν,`,`′

7−→ P ′ | Q

[com-l]

P
x!u,k·h7−→ P ′ Q

x?(Y ),k′·h′

7−→ Q′

P | Q
x,k·h, k+k′·h′

7−→ P ′ | Q′{u/Y }

[com-r]

P
x?(Y ),k·h7−→ P ′ Q

x!u,k′·h′

7−→ Q′

P | Q
x,k·h,k+k′·h′

7−→ P ′{u/Y } | Q′

[new]

P
x,`,`′

7−→ Q

(ν x@r, z@r′) P r,`,`′

7−→ (ν x@r, z@r′) Q

[new-r]

P
r,`,`′

7−→ Q

(ν z@r′) P r,`,`′

7−→ (ν z@r′) Q

Table 1 The intensional semantics of the stochastic pi calculus.

The following notations are relevant for the definition of the stochastic transition relation:203

next(P ) = {((r, `, `′), Q) | P r,`,`′

7−→ Q};204

let P be a set of pairs ((r, `, `′), Q), [P ]Q is the subset of P of those pairs ((r′, `′′, `′′′), Q′)205

such that Q′ ≡+ Q;206

can(P) is defined over sets of pairs ((r, `, `′), Q) such that the processes occurring as207

second element of the pairs are all structurally equivalent (≡+). It returns a solution Q′208

such that there is an (r, `, `′) with ((r, `, `′), Q) ∈ P and Q is in canonical form.209

I Definition 3 (Stochastic transition relation). The pi calculus stochastic transition relation210

λ−→, where λ ∈ R+, is the least relation satisfying the following rule:211

if P r,`,`′

7−→ Q then P λ−→ can([next(P )]Q), where λ =
∑

((r,`,`′),Q′)∈[next(P )]Q
r .212

The stochastic transition relation of pi calculus corresponds to a Continuous Time213

Markov Chain (CTMC) transition system with only silent interactive transitions [14, 15].214

In a markovian state with n outgoing markovian transitions labeled λ1, · · · , λn, the prob-215

ability that the sojourn time is less than t is exponentially distributed with rate
∑
i λi,216

i.e. Prob(delay < t) = 1 − e−t
∑

i
λi , and the probability that the j-th transition is taken217

is λj/(
∑
i λi). Since CTMC are the standard models underlying traditional simulation218

algorithms [17, 11, 22], we may also use automatic analysis tools for experimenting in silico219

the dynamics of our specifications. (Well, these tools cannot be used in their current version:220

an extension with ledger values is necessary beforehand.)221
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4 The abstract modelling of Blockchain and its analysis222

Blockchain realises a distributed ledger on a peer-to-peer network. The key participants223

of the protocols are the miners that create blocks of the ledger and broadcast them to the224

nodes of the network. Our modelling of the blockchain system details miners’ behaviours as225

a stochastic pi calculus process. More precisely, a blockchain system is a parallel composition226

of n miners that communicate through channels z1, · · · , zn with rates r1, · · · , rn, respectively,227

(νz1@r1, · · · , zn@rn)
( ∏
zi∈{z1,··· ,zn}

Miner{z1,··· ,zn}\zi
(G,∅, zi)

)
228

where G is the ledger with the genesis block only. We are assuming the presence of a finite229

number of process name definitions MinerU – the miners –, where U is a finite set of channels 1.230

Their definition is231

MinerU (L, X, z) = (ν w@rw)
((

z?(b). MinerU (L, Xab, z)
+ w!newBlock(L)
+ if (X = ε) then τr′ .MinerU (L, X, z)

else if (head(X).id ∈ L.blocks) then
τr′ .MinerU (addBlock(L, head(X)), tail(X), z)

else τr′ . MinerU (L, tail(X)ahead(X), z))
| w?(b).(MinerU (addBlock(L, b), X, z) |

∏
z′∈U z ′!(b)))

232

Miners retain a local copy of the ledger – the argument L – and a set X of blocks that have233

been received from the network through z and that have not been inserted in L. This set is234

implemented as a list in our modelling. A miner behaves as follows:235

it may receive a block from the network – operation z?(b). The block is stored in X236

because it is possible that b cannot be inserted in L since its parent block is not already237

in the ledger.238

it may create (e.g. mine) a new block – operation w!newBlock(L). In our setting, mining239

a block amounts to transmitting it on a channel with a given rate – the channel w. This240

rate indicates the nodes’ rate of generating new blocks. Therefore, it corresponds to the241

computational power of miners to solve the cryptopuzzles of the proof-of-work. [In this242

way we abstract away from the proof-of-work technique for mining blocks.] When a block243

is created by a miner, it is added to the local ledger and it is broadcasted to all the other244

miners of the network – the parallel subprocess starting with w?(b).245

1 This formalization does not fully comply with the language defined in Section 3 because Miner is
actually parametric with respect to sets of names. A more appropriate formalization would have been
(1) to admit systems with a global finite set Ch of constant (channel) names and rates and (2) to extend
Table 1 with the additional rule

[glob]

P
x,`,`′

7−→ Q (x, r) ∈ Ch

P
r,`,`′

7−→ Q

The process name Miner would then be indexed by a set of constant names. However, we have preferred
the current presentation, even if not perfectly proper, because it is simpler and it avoids to deviate
from the standard definition of stochastic pi calculus. What matters is that our results are in no way
dependent on the presentation of the blockchain system.
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it may take a block that is stored in the local bag X. Since X is a list, the node extracts246

the first block of the list – head(X) –, if any. There are two cases: either the block can247

be added (the parent is already in the local ledger) or not. In this last case the block is248

re-inserted in the bag in the tail position – operation tail(X)ahead(X). This behaviour249

is modelled by the conditional subprocess.250

It is worth to notice that, when a block b is mined locally, its pointer is the handle. In251

this case addBlock(L, b) returns a ledger where b is at maximal depth and the handle is a252

pointer to b. On the contrary, when a block b is received from the network, b.id may be253

different from the handle and addBlock(L, b) connects b to the block pointed by b.id. In this254

case, the handle of addBlock(L, b) is equal to the one of L if the new block has not changed255

the maximal depth of the ledger; it is a pointer to b if this block is at a strictly greater depth256

than the maximal one of L. These two cases are discussed and illustrated in Section 2.257

Properties258

In the remaining part of the section we compute the probability of a blockchain system to259

devolve into inconsistent states, e.g. into a state where at least two nodes have different260

ledgers. In order to ease our arguments, among the possible states of the stochastic transition261

system, we select those where the broadcast messages have all been delivered. This scenario262

is usual in blockchain because the rate of block delivery is much higher than the one of263

mining. For example, in Bitcoin, the nodes that have not yet received the last block after 40264

seconds are less than 5%, whilst blocks are mined every 10 minutes [6].265

I Definition 4. A state of a blockchain system is called completed when it is structurally266

equivalent (ν z1@r1, · · · , zn@rn)
( ∏

i∈1..n Miner(Li, ε, zi)
)
. Namely, in a completed state,267

there is no block to deliver and the blocks in the local lists Xi have been already inserted in268

the corresponding ledgers.269

I Proposition 5. Let P be a completed state of a blockchain system and let L and L’270

be two ledgers in different nodes. Then tree(L) = tree(L′). Therefore, if L 6= L′ then271

handle(L) 6= handle(L′).272

I Definition 6. Let L and L′ be two ledgers and let273

m be the length of L ↑,274

n be the length of L′ ↑,275

h be the length of the maximal common suffix of L ↑ and L′ ↑.276

We say that L and L′ have a fork of length k, where k = max(m− h, n− h).277

In the foregoing definition of miner, the channels z1, · · · , zn broadcast blocks with rates r1,278

· · · , rn, respectively. These rates are actually parameters of an exponential distribution [6].279

In the following theorems, for sake of simplicity, we identify all these parameters by taking280

the parameter of the exponential distribution mean, which we call r.281

I Theorem 7. Let P be a completed state of a blockchain system consisting of n miners282

with ledgers L1, . . . , Ln, respectively, such that L1 = · · · = Lk and Lk+1 = · · · = Ln and283

L1 6= Lk+1. Let L1 and Lk+1 have fork of length m. Then the probability Prob(P m+1) to284

reach a completed state with fork of length m + 1 is smaller than (R =
∑n
j=1 rwj

and we285

assume that, for every i, j, r = ri = rj)286 ∑
1 ≤ i ≤ n

H ⊂ {1, · · · , n} \ i
i ≤ k ⇒ j ∈ {k + 1, · · · , n} \H
i > k ⇒ j ∈ {1, · · · , k} \H

Θ(i, |H|, j)287
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where Θ(i, `, j) =
rwi

rwj

R (R+ (n− 1− `)r)
∏

1≤h≤`
h r

R+ (n− h)r
∏

1≤a≤2n−2−`
a r

R+ a r
.288

It is worth to notice that the probability Prob(P m+1) of Theorem 7 depends on the289

number of nodes, their hashing power and the latency of the network. The proof has required290

a time-consuming analysis of the stochastic transition system due to the state explosion with291

respect to the number of nodes. Using a technique similar to Theorem 7 we may compute292

the probability that a blockchain system in a completed consistent state (the nodes have293

the same ledger) devolves into an inconsistent state. In this case, the proof is simpler than294

Theorem 7 because every node may mine after the first one.295

I Proposition 8. Let P be a completed state of a blockchain system consisting of n miners296

having ledger L. The probability Prob(P 1) to reach a completed state with fork of length 1297

is smaller than (R =
∑n
j=1 rwj

and we assume that, for every i, j, r = ri = rj)298 ∑
1 ≤ i ≤ n

H ⊂ {1, · · · , n} \ i
j ∈ {1, · · · , n} \H

Θ(i, |H|, j)299

where Θ(i, `, j) =
rwi

rwj

R (R+ (n− 1− `)r)
∏

1≤h≤`
h r

R+ (n− h)r
∏

1≤a≤2n−2−`
a r

R+ a r
.300

Figure 1 Hashrate distribution of Bitcoin mining pools on January 2019.
Source: https://www.blockchain.com/.

In order to bear some numerical results, we instantiate our probability with realistic301

channel rates. In [19], the time a miner takes to create a block is exponential with parameter302

θ, which represents the probability that the miner solves the cryptopuzzle problem in a303

given time-slot [1]. It follows that θ = h/D, where h is miner’s hashing power and D is the304

cryptopuzzle difficulty set by the protocol in order to set constant to 10 minutes the average305

duration between two blocks. In our encoding, θ is represented by rwi , therefore rwi = hi/D306

and, taking the current hashing power distribution of the Bitcoin system illustrated in Figure 1,307

and letting D = 600, we obtain rwBTC.com = 0.000245, rwANTpool = 0.000196, rwF2pool = 0.00018,308

etc. As regards the broadcast of messages, in the blockchain protocol, it is a combination of309

transmission time and the local verification of the block. From [6] we know that in a Bitcoin310

environment, the broadcast can be approximated as an exponential distribution with mean311

time 12.6 seconds. Therefore we may assume that every ri is 1/12.6.312



XX:10 A Formal Analysis of Blockchain Consensus

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

partitions

0

10

20

30

40

50

60

70

80

90

100

h
a
s
h
in

g
 p

o
w

e
r 

p
e
rc

e
n
ta

g
e

First partition hashrate percentage

Second partition hashrate percentage

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

first partition size

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

p
ro

b
a
b
ili

ty

10
-3

Figure 2 Probability trend with the first partition composed by the pools with largest hashrate
percentage.

In Figure 2 we illustrate our results. The probability that ledgers turn into a state with313

longer forks. In the left picture there are 16 possible initial partitions (the sum of blue and314

red columns is always 100); in the right picture there are the corresponding 16 probabilities315

to increase the inconsistency computed according to our formula. The reader can observe316

that the highest probability to increase inconsistency corresponds to the case where the two317

partitions have equivalent hash rates.318

In the following figure we highlight the probability decay of creating larger and larger
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319

inconsistencies in the case where the two initial partition have equivalent hash rates (which320

is the case where the probability is higher). For example, it is around 10−30 for forks of321

length 10.322

I Remark 9. Our analysis addresses the case of a fixed set of miners where communications323

always succeed. In particular, it does not cover those (blockchain) systems where nodes may324

either leave or join the network (dynamic networks) or networks where nodes may fail or325

broadcasts manifest delay or loss of information during the communication. We remark that326

our technique can be also used for analyzing these general situations because they may be327

modelled in stochastic pi calculus (actually, this calculus has been used because we had this328

extension in mind). The analysis of these cases is left to future work because computing329

the probabilities by hand is extremely time-consuming (since the processes become more330

complex). In this respect, using an automatic tool for the stochastic pi calculus with ledger331

datatype will save us a lot of time. [The extension of an analyzer, such as [17, 11, 22], with332

this feature is under scrutiny.]333
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5 Analysis of a possible attack334

In this section we analyze the behaviour of the Blockchain system in presence of hostile335

miners. The attack we model is the one described in [19], namely a hostile miner tries to336

create an alternate chain faster than the honest one. This scenario admits that a merchant337

can be convinced that a transaction has been accepted and then create a new branch of338

the chain, longer than the valid one, with some other transaction spending the same money339

(double spending attack). Technically, the difference with MinerU is that the dishonest miner,340

called MinerD
U , mines on a block d that is not the correct one (e.g. the first block added at341

maximal depth). We use the operation newBlockD(L, d) that takes a ledger L and a block342

d ∈ L.blocks and returns a new block whose pointer is d (therefore it will be connected to343

d). The definition of MinerD
U is344

MinerD
U (L, X, z, d) =
(ν w@r)

( (
z?(b). MinerD

U (L, Xab, z, d)
+ w!newBlockD(L, d)
+ if (X = ε) then τr′ . MinerD

U (L, X, z, d)
else if (head(X).id ∈ L.blocks) then

τr′ .MinerD
U (addBlock(L, head(X)), tail(X), z, d)

else τr′ . MinerD
U (L, tail(X)ahead(X), z, d))

| w?(b).(MinerD
U (addBlock(L, b), X, z, b) |

∏
z′∈U z ′!(b)))

345

The hostile miner has an additional argument with respect to honest ones, the block d, which346

is the block on which he wants to mine. Following the same pattern of Section 4347

I Theorem 10. Let P be a completed state of a blockchain system of n miners with exactly348

one that is hostile and let rwd
its mining rate. The probability Prob(Pm) to reach a completed349

state where the hostile miner has created an alternate chain longer than the honest one from350

m,m ≥ 1, blocks behind is smaller than (R =
∑n
j=1 rwj

and we assume that, for every i, j,351

r = ri = rj)352 ∑
k≥1

[
Φ(rwd

, r, R)k
( ∑

1≤j≤n−1
Φ(rwj

, r, R)
)k−1]m

353

where Φ(rw, r, R) =
rw

R

∏
1≤a≤n−1

a r

R+ (n− a)r
.354

As for Theorem 7, the technique used for demonstrating the above statement consists of355

analyzing the stochastic transition system. The technique is therefore different from the one356

in [19], where it is assumed a priori that the ratio between blocks mined by the attacker and357

those mined by the honest miners is the expected value of a Poisson distribution. In fact,358

this distribution expresses the probability of a given number of events occurring in a fixed359

interval of time with a known constant rate and independently of the time since the last360

event. Thus, Nakamoto models the attack counting the number of successes, i.e. the number361

of blocks caught up from the attacker, in a series of intervals measured in times asusming362

that the probability for success does not change during the experiment.363

Let us discuss the probability trend of a successful attack in Bitcoin. We consider the364

current main pools of Bitcoin miners (see Figure 1) and assume that one of them decides365

to become hostile. Our results, for BTC.com, AntPool, and F2Pool are reported in Table 2366

(these pools have a decreasing hashrate). We derive that the probability a hostile miner367
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Pool m = 1 m = 5 m = 10 Approximation

BTC.com 0.168 0.00013 0.000000017 6−m

AntPool 0.131 0.000039 0.0000000015 7−m

F2Pool 0.119 0.000024 0.00000000059 8−m

Table 2 Probability of a successful attack in the actual Bitcoin setting.
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Figure 3 Probability depending on the hashing power of nd.

catches up from 1 block behind increases with the percentage of the hashing power and368

drops exponentially with the number of blocks to catch up. These results are also graphically369

illustrated in Figure 3, with the additional hypothetical case (the purple line) that the three370

largest pools decide to join and become hostile. This coalition would possess more than the371

30% of the total hashing power and it is clear that its probability to create an alternate chain372

is very high.373

6 Conclusions374

We have studied the probability that the blockchain protocol may devolve the ledger into375

inconsistent copies because of forks. Two cases have been analyzed: when the system consists376

of honest miners and when the system has one hostile miner that mines blocks in wrong377

positions. These results are gathered by means of an original modelling of the blockchain378

system by means of a stochastic process calculus – the stochastic pi calculus.379

Our results can be applied to analyze other well-known attacks to the blockchain protocol,380

such as failures either of communications or of miners, the inception of new miners that381

may be hostile (actually, pi calculus has been used because we had this extension in mind),382

etc. In this paper we restricted to the case of static sets of nodes because computing the383

probabilities by hand is extremely time-consuming. The analysis of the above cases is left to384

future work.385

As a matter of fact, stochastic calculi come with several automatic analysis techniques386

for experimenting in silico the dynamics of specifications, such as stochastic timed logics,387

stochastic temporal logics, and stochastic model checking [17, 11, 22]. However, it has not388

been possible to reuse these tools right-away because, in their current version, they miss389

ledger values. The extension of a stochastic analyzer with the ledger datatype is also left to390

future research.391
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A Technical details462

This appendix collects the demonstration of the statements in the paper. For readability463

sake we also report the statements.464

Theorem 7. Let P be a completed state of a blockchain system consisting of n miners465

with ledgers L1, . . . , Ln, respectively, such that L1 = · · · = Lk and Lk+1 = · · · = Ln and466

L1 6= Lk+1. Let L1 and Lk+1 have fork of length m. Then the probability Prob(P m+1) to467

reach a completed state with fork of length m + 1 is smaller than (R =
∑n
j=1 rwj and we468

assume that, for every i, j, r = ri = rj)469 ∑
1 ≤ i ≤ n

H ⊂ {1, · · · , n} \ i
i ≤ k ⇒ j ∈ {k + 1, · · · , n} \H
i > k ⇒ j ∈ {1, · · · , k} \H

Θ(i, |H|, j) (1)470

where Θ(i, `, j) =
rwi rwj

R (R+ (n− 1− `)r)
∏

1≤h≤`
h r

R+ (n− h)r
∏

1≤a≤2n−2−`
a r

R+ a r
.471

Proof. The proof is split in two parts. In the first part we demonstrate that the above472

formula is smaller than 1; in the second part we demonstrate that it is an upper bound for473

Prob(P m+1).474

Part 1. the formula (1) is smaller than 1. The formula (1) can be rewritten475 ∑
1 ≤ i ≤ k

H ⊂ {1, · · · , n} \ i
j ∈ {k + 1, · · · , n} \H

Θ(i, |H|, j) +
∑

k + 1 ≤ j ≤ n
H ⊂ {1, · · · , n} \ j
i ∈ {1, · · · , k} \H

Θ(j, |H|, i) (2)476

We analyze the first addend and we demonstrate that it is smaller than 1/2. Since H is every477

possible subset of n− 2 indices, then, letting ` = |H|, there are
(
n−2
`

)
different possible sets478

H. Picking j 6∈ H, we can rewrite the first addend of (2) as:479

∑
1≤i≤k

rwi

R

∑
0≤`≤n−2

(
n− 2
`

) ∏
1≤h≤`

h r

R+ (n− h)r
∑

k+1≤j≤n, j 6∈H

rwj

R+ (n− 1− `)r
∏

1≤a≤2n−2−`

a r

R+ a r

(3)480

First observe that a r
R+a r ≤ 1; therefore

∏
1≤a≤2n−2−`

a r
R+a r ≤ 1, as well. Henceforth (3) can481

be over-approximated as482

∑
1≤i≤k

rwi

R

∑
0≤`≤n−2

(
n− 2
`

) ∏
1≤h≤`

h r

R+ (n− h)r
∑

k+1≤j≤n, j 6∈H

rwj

R+ (n− 1− `)r (4)483

Moreover, since 1
R+(n−h)r ≤

1
(n−h)r , then484

∏
1≤h≤`

h r

R+ (n− h)r ≤
∏

1≤h≤`

h r

(n− h)r ≤
`! r`

(n− 1) . . . (n− `)r` .485

486
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Thus, we obtain that (4) is less than or equal to:487 ∑
1≤i≤k

rwi

R

∑
0≤`≤n−2

(
n− 2
`

)
`!

(n− 1) . . . (n− `)
∑

k+1≤j≤n, j 6∈H

rwj

R+ (n− 1− `)r488

≤
∑

1≤i≤k

rwi

R

∑
0≤`≤n−2

(n− 2)!
`!(n− 2− l)!

`!
(n− 1) . . . (n− `)

∑
k+1≤j≤n, j 6∈H

rwj

R+ (n− 1− `)r489

≤
∑

1≤i≤k

rwi

R

∑
0≤`≤n−2

(n− 2) . . . (n− 1− `)
(n− 1) . . . (n− `)

∑
k+1≤j≤n, j 6∈H

rwj

R+ (n− 1− `)r490

≤
∑

1≤i≤k

rwi

R

∑
0≤`≤n−2

(n− 2) . . . (n− 1− `)
(n− 1)

∑
k+1≤j≤n, j 6∈H

rwj

R+ (n− 1− `)r (5)491

492

The sum of rwj
terms with j /∈ H can be over-approximated by the sum of all the terms of

the second partition, i.e. ∑
k+1≤j≤n, j 6∈H

rwj
≤

∑
k+1≤j≤n

rwj
.

As a consequence, (5) can be over-approximated as follows:493 ∑
1≤i≤k

rwi

R

∑
0≤`≤n−2

n− 1− `
(n− 1)(R+ (n− 1− `)r)

∑
k+1≤j≤n

rwj
494

≤ 1
R

∑
1≤i≤k

rwi

∑
k+1≤j≤n

rwj

∑
0≤`≤n−2

n− 1− `
(n− 1)(R+ (n− 1− `)r)495

≤ 1
R

∑
1≤i≤k

rwi

∑
k+1≤j≤n

rwj

∑
0≤`≤n−2

n− 1− `
(n− 1)(R+ (n− 1− `)r)496

≤ 1
R

∑
1≤i≤k

rwi

∑
k+1≤j≤n

rwj

∑
0≤`≤n−2

n− 1− `
(n− 1)((n− 1− `)r)497

≤ 1
R r

∑
1≤i≤k

rwi

∑
k+1≤j≤n

rwj

∑
0≤`≤n−2

n− 1− `
(n− 1)(n− 1− `)498

≤ 1
R r

∑
1≤i≤k

rwi

∑
k+1≤j≤n

rwj

∑
0≤`≤n−2

1
n− 1499

≤ 1
R r

∑
1≤i≤k

rwi

∑
k+1≤j≤n

rwj500

501

Since502 ∑
0≤`≤n−2

1
n− 1 ≤

n− 1
n− 1 = 1503

and taking R ≤ r ≤ 1
2 it follows that504

1
R r

∑
1≤i≤k

rwi

∑
k+1≤j≤n

rwj
≤ R

r
≤ 1

2 .505

Thus, for every n > 2:506 ∑
1 ≤ i ≤ k

H ⊂ {1, · · · , n} \ i
j ∈ {k + 1, · · · , n} \H

Θ(i, |H|, j) ≤ 1
R r

∑
1≤i≤k

rwi

∑
k+1≤j≤n

rwj
≤ 1

2507
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Figure 4 The computations to a completed state from s1,3 of a systems consisting of miners
N1, N2, N3 where N1 and N2 have the same ledger and N3 a different one. The final states with red
bullet represent a completed state where N1, N2 have a same ledger and N3 a different one; the blue
bullets those states where N2, N3 have the same ledger and N1 a different one. Transitions are labelled
with the miners that move.

Therefore, it follows that:508 ∑
1 ≤ i ≤ n

H ⊂ {1, · · · , n} \ i
i ≤ k ⇒ j ∈ {k + 1, · · · , n} \H
i > k ⇒ j ∈ {1, · · · , k} \H

Θ(i, |H|, j) ≤ 2
R r

∑
1≤i≤k

rwi

∑
k+1≤j≤n

rwj
≤ 1 (6)509

Part 2. the formula (1) is Prob(P m+1). The probabilities is computed by analyzing510

the states of the transition system in detail. To illustrate the technique we first illustrate511

the simple case that nodes 1 and k + 1 mine before any broadcast. So assume to be in a512

state s1,k+1 where such minings have already occurred. From s1,k+1 it is possible to reach a513

completed state of fork m+ 1 with computations of length 2n− 2 (because there are two514

blocks to be delivered to n− 1 nodes). The probability that one of these computations is515

chosen is516 ∏
1≤a≤2n−2

r

R+ a r
.517

Next, we notice that there are (2n− 2)! different computations that reach a completed state518

of fork m + 1. [The different completed states are actually 2n−2 because the partition of519

nodes with same ledgers may change, but this is not relevant in the following discussion. In520

Figure 4 we show the case of three nodes.]521

Therefore the whole probability is522

∏
1≤a≤2n−2

a r

R+ a r
.523
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In general, we may write this probability as a function524

Ψ(u, v) =
∏

1≤a≤2u−2−v

a r

R+ a r
525

where u is the number of nodes of the system and v is the number of nodes that have received526

the first block (v ≤ n− 2 because otherwise we do not have forks). In the above simple case,527

u = n and v = 0.528

Since the probability to reach s1,k+1 from the initial state is529

rw1

R

rwk+1

R+ (n− 1)r
530

then the probability to reach a completed state of fork m+ 1 starting from the initial state531

and traversing s1,k+1 is532

rw1

R

rwk+1

R+ (n− 1)r
Ψ(n, 0) .533

We notice that there is a symmetric state in the system, where node k+ 1 mines before node534

1. The composite probability of these two states is therefore535

2×
rw1

R

rwk+1

R+ (n− 1)r
Ψ(n, 0) .536

We are in place to compute the probability that the two nodes that mine are i and j, where537

1 ≤ i ≤ k and k + 1 ≤ j ≤ n. This probability is538

2×
∑

1≤i≤k,k+1≤j≤n

rwi

R

rwj

R+ (n− 1)r
Ψ(n, 0) .539

The general case is when540

1. a node i ∈ {1, · · · , k} mines,541

2. the new block is communicated to a set of nodes H and542

3. a node in {k + 1, · · · , n} \H mines.543

The probability of this case is Θ(i, |H|, j)544

rwi rwj

R (R+ (n− 1− |H|)r)

( ∏
1≤h≤|H|

h r

R+ (n− h)r

)
Ψ(n, |H|)545

where the factor
(∏

1≤h≤|H|
h r

R+ (n− h)r

)
is the probability of nodes in H to receive the546

first block mined. Henceforth, the probability to reach a completed state with fork m+ 1547

from the initial state is548 ∑
1 ≤ i ≤ k

H ⊂ {1, · · · , n} \ i
j ∈ {k + 1, · · · , n} \H

Θ(i, |H|, j) +
∑

k + 1 ≤ j ≤ n
H ⊂ {1, · · · , n} \ j
i ∈ {1, · · · , k} \H

Θ(j, |H|, i)549

which is exactly what stated in the theorem. J J550
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Theorem 10. Let P be a completed state of a blockchain system of n miners with exactly551

one that is hostile and let rwd
its mining rate. The probability Prob(Pm) to reach a completed552

state where the hostile miner has created an alternate chain longer than the honest one from553

m,m ≥ 1, blocks behind is smaller than (R =
∑n
j=1 rwj and we assume that, for every i, j,554

r = ri = rj)555 ∑
k≥1

[
Φ(rwd

, r, R)k
( ∑

1≤j≤n−1
Φ(rwj , r, R)

)k−1]m
556

where Φ(rw, r, R) =
rw

R

∏
1≤a≤n−1

a r

R+ (n− a)r
.557

Proof. Assume to be in a completed state in which every node has the same ledger, i.e.558

Bi = Bj , ∀i, j ∈ {1, . . . , n}. We want to compute the probability to reach a completed state559

in which the dishonest node has created an alternate chain from m blocks behind. We start560

by computing the probability that the dishonest node nd has caught up by one block. This561

kind of attack succeeds if nd mines one block and all the other nodes receive the block, i.e.562

the probability is:563

rwd

R

∏
1≤a≤n−1

a r

R+ (n− a)r564

Otherwise, it succeeds also in the case the honest nodes mine k blocks and nd mines k+ 1565

blocks in the same amount of time. Thus, we obtain the formula566 ∑
k≥1

(rwd

R

∏
1≤a≤n−1

a r

R+ (n− a)r

)k( ∑
1≤j≤n−1

rwj

R

∏
1≤a≤n−1

a r

R+ (n− a)r

)k−1
567

Now, is trivial to prove that the probability that nd create an alternative chain one block568

longer than the original chain from m blocks behind is569 [∑
k≥1

(rwd

R

∏
1≤a≤n−1

a r

R+ (n− a)r

)k( ∑
1≤j≤n−1

rwj

R

∏
1≤a≤n−1

a r

R+ (n− a)r

)k−1]m
570

Finally, note that Prob(Pm) is less than one. In fact, by observing that
∏

1≤a≤n−1
a r

R+(n−a)r ≤571

1,572

Prob(P1) =
∑
k≥1

(rwd

R

∏
1≤a≤n−1

a r

R+ (n− a)r

)k(∑
1≤j≤n−1

rwj

R

∏
1≤a≤n−1

a r

R+ (n− a)r

)k−1

≤
∑
k≥1

(rwd

R

)k(∑
1≤j≤n−1

rwj

R

)k−1

=
∑
k≥1

(rwd

R

)k(
1−

rwd

R

)k−1

=
∑
k≥1

(
rwd

R

)k(
1−

rwd
R

)k

1−
rwd

R

=
∑
k≥1

(
rwd

R −
r2

wd
R2

)k

1−
rwd

R

=
R

R− rwd

∑
k≥1

(rwd

R
−
r2
wd

R2

)k

573



XX:20 A Formal Analysis of Blockchain Consensus

This series is a geometric one with common ratio ρ = rwd

R −
r2

wd

R2 ∈ [0, 1] because by hypothesis574

rwd
≤ R ≤ 1. Thus, we have575

R

R− rwd

∑
k≥1

(rwd

R
−
r2
wd

R2

)k
=

R

R− rwd

( 1

1− rwd

R + r2
wd

R2

− 1
)

=
R

R− rwd

rwd
R (1−

rwd
R )

1−
rwd

R +
r2

wd
R2

=
rwd

R

1−
rwd

R +
r2

wd
R2

=
rwd

R

R2 − rwd
R+ r2

wd

≤ 1

576

Since Prob(P1) ≤ rwd
R

R2−rwd
R+r2

wd

≤ 1, it immediately follows that

Prob(Pm) ≤
( rwd

R

R2 − rwd
R+ r2

wd

)m
≤ 1 .

J J577
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