

ALMA MATER STUDIORUM Università di Bologna

Solving Mathematical puzzles the viewpoints of Artificial Intelligence and Psychological Cognitive Science

<u>Federico Chesani</u>^a, Elisa Gambetti^b, Fiorella Giusberti^b, Daniela Loreti^c, Paola Mello^a

^aDepartment of Computer Science and Engineering – DISI, University of Bologna ^bDepartment of Psychology, University of Bologna ^cCIRI Health Sciences & Technologies, University of Bologna

Premises...

AI has witnessed several achievements in the last years

To cite few of the most popular:

- ImageNet competition: in 2011 the margin of error of the AI systems in the recognition and classification of images was 26%, today is 3%.
 Notice: humans are less efficient and make more mistakes... on average 5%
- IBM Watson: in 2011 the software Watson competed against former human winners and won in the Jeopardy game.
- AlphaGO: in March 2016, the AlphaGO prototype by Google won against Lee Sedol, one of the best world players of GO

Why?

Premises...

Why?

Many reasons... at least two key factors:

- 1. Increased availability of **computational power** (memory, number of processors, high parallel algorithms, bandwith, etc.)
- 2. The **Big Data** era: huge quantity of data are every day collected and stored, and possibly analyzed.

Notice: Deep Neural Networks is one of the approaches that highly gained from the factors above...

... but other AI techniques have taken advantages.

However, some problems are still difficult

Let us consider the following problem:

Jacob, Lucy and Frank are three friends whose ages add up to 28 years. How many years later will their ages total 37 years?

- A 9 years old child can easily solve it.
- From the mathematical viewpoint, the problem is quite simple
- From an Al-researcher viewpoint, the problem is **trivial**

The problem in its original form (natural language), cannot be solved by current AI systems.

What is missing?

However, some problems are still difficult

Jacob, Lucy and Frank are three friends whose ages add up to 28 years. How many years later will their ages total 37 years?

- A 9 years old child can easily solve it.
- From the mathematical viewpoint, the problem is quite simple
- From an Al-researcher viewpoint, the problem is trivial
 - 1. Model three friends' ages as three variables
 - Variables must be integers; their sum is 28; their sum+3X is 37; find X.
 - 3. Give to a constraint solver, and find solution(s)

However, these steps ask for a substantial human intervention.

Al currently provides efficient yet specialized tools... but **human** intervention is still required to comprehend a problem, and model it in a suitable, computer-understandable way.

Mathematical puzzles as a challenge

Mathematical puzzles are recreative mathematical quizzes, with several distinct characteristics:

- Aimed to human entertainment
- They can be very different in nature
- They are described in text and/or diagrams

Mathematical puzzles as a challenge - examples

There is an island where every inhabitants is either a knight or a knave (exclusive or). Knights always tell the truth, while knaves always lie.

You are a tourist just arrived in the island, and you met two inhabitant A and B. A says "I am a knave, or B is a knight."

What are A and B?

Which is biggest? The blue area or the white?

How many triangles can you see?

Mathematical puzzles as a challenge - examples

Uno zoo ha appena ricevuto in regalo quattro nuovi animali: un leone, un elefante, un topolino, e un gatto. Purtroppo le gabbie sono solo tre. Il problema è che il leone si mangerebbe volentieri sia il topo, che l'elefante. L'elefante a sua volta ha paura del topo. E il gatto? Beh, il gatto se potesse farebbe banchetto del topo. I guardiani dello zoo non sanno quali animali mettere in quali gabbie. Riesci a suggerire un'idea di chi potrebbe andare in quale gabbia?

From the AI viewpoint, a constraint problem with:

- 4 variables
- 3 domain values
- 4 constraints

Mathematical puzzles as a challenge

To be solved, they call for:

- Natural Language understanding (reading skills and semantic processing)
- Diagram comprehension
- Basic common, default knowledge
- Working, short- and long- term memories
- Basic inductive and deductive reasoning capabilities
- Quantitative knowledge (basic math skills)

To be solved, they DO NOT call for:

- Advanced mathematical skills
- Deep knowledge on a specific domain
- Huge data sets for training

A provocative slogan: they do no ask for big data, but rather for **big** reasoning

The ASIA-GiM project

- Internally funded by the University of Bologna, under the AlmalDEA internal funding scheme, 2017
- Small team: it involves three informatics engineers, and two psychologist

Goals:

- Investigate and understand recent advancements in cognitive and psychological science, towards the goal of autonomous, fully fledged agents able to solve mathematical puzzles.
- Identify/collect/create a dataset of mathematical puzzles, to support analys and research.
- Investigate and possibly develop a software prototype able to comprehend a mathematical puzzle, with a current restriction to CSP problems.

The ASIA-GiM project – many research questions

- Which problems are we going to consider?
- Problems, problem types and AI: any classification possible?
- Problems, problem types and psychological/cognitive sciences: any classification possible?
- Dealing with NLP and diagrams to provide a unified problem understanding – how?
- Which reasoning process? How a child select a solution method rather than another?
- From the problem description to the problem understanding to a problem representation how?
- AI terms, and psychological/cognitive terms... any possible encounter?

Which problems are we going to consider?

Starting point: the International Competition of Mathematical Puzzles

- Target: different student ages, from 9 years old, up to 19 years old, and grouped by their ages
- International organizer: Fédération Française des Jeux Mathématiques https://www.ffjm.org/
- Italian organizer: Bocconi University and the MATEPristem initiative https://giochimatematici.unibocconi.it/
 A (copyrighted) database of games and solution available on their site

Our choice:

- Let us focus on problems for children aged 9-10 years (4th-5th grade of primary school)
- Why? no need of any specific notion, except default common reasoning...

Problems, problem types and AI: any classification possible?

- Focusing on the Bocconi database, category "CE" (4th and 5th grade of primary school)
- Years 2001 2017, for a total of 147 puzzles

Clear distinction between:

- problem type
- modelling approach
- solution approach

Problems, problem types and AI: any classification possible?

٠

Problems, problem types and AI: any classification possible?

• Which modelling technique?

Model Description

Problems, problem types and AI: any classification possible?

• Which solution technique?

Problems, problem types and psychological/cognitive sciences: any classification possible?

Puzzles characteristics (from the cognitive viewpoint)

• E.g., is the diagram suggesting the solution? Is it suggesting the question? Is it misleading?

... but also, focus on which competences are required to solve them

- Still an ongoing work
- Starting point: the Cattell-Horn-Carroll Theory of Cognitive Abilities
 - not all the abilities are of interest: e.g., psychomotor abilities, or tactile abilities are currently ignored

Dealing with NLP and diagrams to provide a unified problem understanding – how?

Currently, we are not dealing with this issue...

However, it is worthy to mention the Visual Query Answering research field

How to mix information coming from the different source modalities?

- Is the text missing some information, that I will find in the diagram?
- Is the diagram missing some information, that I will look for in the text?
- Is the text/diagram suggesting what I should look for? I.e., my goal?

Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., Parikh, D. Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering. CVPR 2017: 6325-6334

Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Zitnick, C. L., Girshick, R. B. CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning. CVPR 2017: 1988-1997

Which reasoning process?

How a child select a solution method rather than another?

A possible experimental research direction:

- let us create several problems, with increased difficulty levels
- let us observe children 9-10 years old and grab some insight on how they approach the problem

Problems: map coloring type; dimensions:

- number of variables
- number of domain values
- number of constraints
- constraint types (inequalities, disequalities, simple mathematical equations)

From the problem description... ...to the problem understanding... ...to a problem representation – how?

Frankly, no idea yet...

Several cognitive architectures exist; to cite few:

- ACT-R Anderson J. R. (1983): The architecture of cognition. Harvard University Press http://act-r.psy.cmu.edu/
- SOAR Newell A. (1990). Unified theories of cognition. Harvard University Press
 Laird J. E., Lebiere C., and Rosenbloom P. S. (2017). A Standard Model for the Mind: Toward a Common Computational Framework across Artificial Intelligence, Cognitive Science, Neuroscience, and Robotics., Al Magazine 38(4). https://soar.eecs.umich.edu/

Conclusions

- Al is experimenting a momentum, but a class of problems is still too difficult for current Al
- Mathematical puzzles are a subclass of those problems...
- ... many research questions, that we are currently investigating

Several practical applications and consequences... for example:

- New models of interaction between humans and machines machines that understand the goals and partner with humans
- Software agents able to aid children in the learning process
- From computation and AI thinking (humans adapt problems to the machine methods) to machines able to understand the problems

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

<u>Federico Chesania</u>, Elisa Gambetti^b, Fiorella Giusberti^b, Daniela Loreti^c, Paola Mello^a

Department of Computer Science and Engineering – DISI, University of Bologna
Department of Psychology, University of Bologna
CIRI Health Sciences & Technologies, University of Bologna

federico.chesani@unibo.it

www.unibo.it